Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Geriatric Nutritional Risk Index is associated with adverse outcomes in patients with hypertension: the Fukushima Cohort study

Abstract

Malnutrition is reportedly associated with adverse clinical outcomes in various populations. However, associations between nutritional status and adverse outcomes in patients with hypertension have not been sufficiently elucidated. We therefore aimed to investigate the impact of nutritional status as evaluated by the Geriatric Nutritional Risk Index (GNRI) on adverse outcomes in patients with hypertension. We conducted a retrospective cohort study of 1588 hypertensive patients enrolled in the Fukushima Cohort Study. Participants were categorized into tertiles (T1–T3) according to GNRI at baseline. The primary endpoint of the present study was a kidney event, defined as a combination of a 50% decline in eGFR from baseline and end-stage kidney disease requiring kidney replacement therapy. Associations between GNRI and kidney events were assessed using Kaplan–Meier curves and multivariate Cox regression analyses. Median age was 64 years, 55% were men, median eGFR was 63.1 mL/min/1.73 m2, and median GNRI was 101.3. The lower GNRI group (T1) showed an increased incidence of kidney events in the Kaplan–Meier curve analysis. Compared to the highest GNRI group (T3), lower GNRI carried a higher risk of kidney events for both T2 (hazard ratio [HR] 1.38, 95% confidence interval [CI] 0.71–2.68) and T1 (HR 3.59, 95%CI 1.96–6.63). Similar relationships were observed for risks of all-cause death and cardiovascular events. Lower GNRI was associated with kidney events, all-cause death, and cardiovascular events in patients with hypertension. Nutritional status as evaluated by GNRI could offer a simple and useful predictor of adverse outcomes in this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res. 2020;126:439–52.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng L, Rong J, Zhuo X, Gao K, Meng Z, Wen X, et al. Prognostic value of malnutrition using geriatric nutritional risk index in patients with coronary chronic total occlusion after percutaneous coronary intervention. Clin Nutr. 2021;40:4171–9.

    Article  CAS  PubMed  Google Scholar 

  3. Nakagawa N, Maruyama K, Hasebe N. Utility of geriatric nutritional risk index in patients with chronic kidney disease: a mini-review. Nutrients. 2021;13:3688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pressoir M, Desné S, Berchery D, Rossignol G, Poiree B, Meslier M, et al. Prevalence, risk factors and clinical implications of malnutrition in French comprehensive cancer centres. Br J Cancer. 2010;102:966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nelson JJ, Liao D, Sharrett AR, Folsom AR, Chambless LE, Shahar E, et al. Serum albumin level as a predictor of incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2000;151:468–77.

    Article  CAS  PubMed  Google Scholar 

  6. Gümüşsoy M, Atmış V, Yalçın A, Bahşi R, Yiğit S, Arı S, et al. Malnutrition-sarcopenia syndrome and all-cause mortality in hospitalized older people. Clin Nutr. 2021;40:5475–81.

    Article  PubMed  Google Scholar 

  7. Djoumessi YF. The impact of malnutrition on infant mortality and life expectancy in Africa. Nutrition. 2022;103-104:111760.

    Article  PubMed  Google Scholar 

  8. Sze S, Pellicori P, Zhang J, Clark AL. Malnutrition, congestion and mortality in ambulatory patients with heart failure. Heart. 2019;105:297–306.

    Article  CAS  PubMed  Google Scholar 

  9. Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent JP, Nicolis I, et al. Geriatric Nutritional Risk Index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005;82:777–83.

    Article  CAS  PubMed  Google Scholar 

  10. Yajima T, Yajima K, Takahashi H. Association of the erythropoiesis-stimulating agent resistance index and the geriatric nutritional risk index with cardiovascular mortality in maintenance hemodialysis patients. PLoS One. 2021;16:e0245625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsukuma Y, Tanaka S, Taniguchi M, Nakano T, Masutani K, Hirakata H, et al. Association of geriatric nutritional risk index with infection-related mortality in patients undergoing hemodialysis: the Q-Cohort study. Clin Nutr. 2019;38:279–87.

    Article  PubMed  Google Scholar 

  12. Yamada S, Yamamoto S, Fukuma S, Nakano T, Tsuruya K, Inaba M. Geriatric Nutritional Risk Index (GNRI) and creatinine index equally predict the risk of mortality in hemodialysis patients: J-DOPPS. Sci Rep. 2020;10:5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishi I, Seo Y, Hamada-Harimura Y, Yamamoto M, Ishizu T, Sugano A, et al. Geriatric nutritional risk index predicts all-cause deaths in heart failure with preserved ejection fraction. ESC Heart Fail. 2019;6:396–405.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kinugasa Y, Kato M, Sugihara S, Hirai M, Yamada K, Yanagihara K, et al. Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ J. 2013;77:705–11.

    Article  CAS  PubMed  Google Scholar 

  15. Sargento L, Vicente Simões A, Rodrigues J, Longo S, Lousada N, Palma Dos Reis R. Geriatric nutritional risk index as a nutritional and survival risk assessment tool in stable outpatients with systolic heart failure. Nutr Metab Cardiovasc Dis. 2017;27:430–7.

    Article  CAS  PubMed  Google Scholar 

  16. Huo X, Wu M, Gao D, Zhou Y, Han X, Lai W, et al. Geriatric nutrition risk index in the prediction of all-cause and cardiovascular mortality in elderly hypertensive population: NHANES 1999-2016. Front Cardiovasc Med. 2023;10:1203130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai X, Hu J, Wen W, Wang M, Zhu Q, Liu S, et al. Association between the geriatric nutritional risk index and the risk of stroke in elderly patients with hypertension: A longitudinal and cohort study. Front Nutr. 2022;9:1048206.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kimura H, Tanaka K, Saito H, Iwasaki T, Oda A, Watanabe S, et al. Association of polypharmacy with kidney disease progression in adults with CKD. Clin J Am Soc Nephrol. 2021;16:1797–804.

  19. Tanaka K, Saito H, Iwasaki T, Oda A, Watanabe S, Kanno M, et al. Association between serum potassium levels and adverse outcomes in chronic kidney disease: the Fukushima CKD cohort study. Clin Exp Nephrol. 2021;25:410–7.

    Article  CAS  PubMed  Google Scholar 

  20. Saito H, Tanaka K, Iwasaki T, Oda A, Watanabe S, Kanno M, et al. Xanthine oxidase inhibitors are associated with reduced risk of cardiovascular disease. Sci Rep. 2021;11:1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakajima A, Tanaka K, Saito H, Iwasaki T, Oda A, Kanno M, et al. Blood pressure control in chronic kidney disease according to underlying renal disease: the Fukushima CKD cohort. Clin Exp Nephrol. 2020;24:427–34.

  22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  23. Rossing P, Baeres FMM, Bakris G, Bosch-Traberg H, Gislum M, Gough SCL, et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol Dial Transpl. 2023;38:2041–51.

    Article  Google Scholar 

  24. Impact of diabetes on the effects of sodium-glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400:1788–801.

  25. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  26. Imai E, Matsuo S, Makino H, Watanabe T, Akizawa T, Nitta K, et al. Chronic Kidney Disease Japan Cohort (CKD-JAC) study: design and methods. Hypertens Res. 2008;31:1101–7.

    Article  PubMed  Google Scholar 

  27. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  28. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8:551–61.

    Article  CAS  PubMed  Google Scholar 

  29. Marrie RA, Dawson NV, Garland A. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol. 2009;62:511–7.e511.

    Article  PubMed  Google Scholar 

  30. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175:66–73.

    Article  PubMed  Google Scholar 

  31. Huang W, Xiao Y, Wang H, Li K. Association of geriatric nutritional risk index with the risk of osteoporosis in the elderly population in the NHANES. Front Endocrinol. 2022;13:965487.

    Article  Google Scholar 

  32. Lee M, Lim JS, Kim Y, Lee JH, Kim CH, Lee SH, et al. Association between geriatric nutritional risk index and post-stroke cognitive outcomes. Nutrients. 2021;13:1776.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morgan DJ, Dhruva SS, Coon ER, Wright SM, Korenstein D. 2017 update on medical overuse: a systematic review. JAMA Intern Med. 2018;178:110–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail. 2010;12:819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hakim RM, Levin N. Malnutrition in hemodialysis patients. Am J Kidney Dis. 1993;21:125–37.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi I, Ishimura E, Kato Y, Okuno S, Yamamoto T, Yamakawa T, et al. Geriatric Nutritional Risk Index, a simplified nutritional screening index, is a significant predictor of mortality in chronic dialysis patients. Nephrol Dial Transpl. 2010;25:3361–5.

    Article  Google Scholar 

  37. Komatsu M, Okazaki M, Tsuchiya K, Kawaguchi H, Nitta K. Geriatric nutritional risk index is a simple predictor of mortality in chronic hemodialysis patients. Blood Purif. 2015;39:281–7.

    Article  PubMed  Google Scholar 

  38. Takahashi H, Ito Y, Ishii H, Aoyama T, Kamoi D, Kasuga H, et al. Geriatric nutritional risk index accurately predicts cardiovascular mortality in incident hemodialysis patients. J Cardiol. 2014;64:32–6.

    Article  PubMed  Google Scholar 

  39. Kuo IC, Huang JC, Wu PY, Chen SC, Chang JM, Chen HC. A low geriatric nutrition risk index is associated with progression to dialysis in patients with chronic kidney disease. Nutrients. 2017;9:1228.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin TY, Hung SC. Geriatric nutritional risk index is associated with unique health conditions and clinical outcomes in chronic kidney disease patients. Nutrients. 2019;11:2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong J, Wang M, Wang J, Yang K, Shi Y, Zhang J, et al. Geriatric nutrition risk index is associated with renal progression, cardiovascular events and all-cause mortality in chronic kidney disease. J Nephrol. 2020;33:783–93.

    Article  PubMed  Google Scholar 

  42. Maruyama K, Nakagawa N, Saito E, Matsuki M, Takehara N, Akasaka K, et al. Malnutrition, renal dysfunction and left ventricular hypertrophy synergistically increase the long-term incidence of cardiovascular events. Hypertens Res. 2016;39:633–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kiuchi A, Ohashi Y, Tai R, Aoki T, Mizuiri S, Ogura T, et al. Association between low dietary protein intake and geriatric nutrition risk index in patients with chronic kidney disease: a retrospective single-center cohort study. Nutrients. 2016;8:662.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kubota K, Miyanaga S, Iwatani N, Higo K, Tokushige A, Ikeda Y, et al. Geriatric nutritional risk index is associated with prognosis in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Circ Rep. 2020;2:372–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shiroma K, Tanabe H, Takiguchi Y, Yamaguchi M, Sato M, Saito H, et al. A nutritional assessment tool, GNRI, predicts sarcopenia and its components in type 2 diabetes mellitus: a Japanese cross-sectional study. Front Nutr. 2023;10:1087471.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Merker M, Felder M, Gueissaz L, Bolliger R, Tribolet P, Kägi-Braun N, et al. Association of baseline inflammation with effectiveness of nutritional support among patients with disease-related malnutrition: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3:e200663.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hunt KJ, Jaffa MA, Garrett SM, Luttrell DK, Lipson KE, Lopes-Virella MF, et al. Plasma connective tissue growth factor (CTGF/CCN2) levels predict myocardial infarction in the Veterans Affairs Diabetes Trial (VADT) cohort. Diabetes Care. 2018;41:840–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maraj M, Kuśnierz-Cabala B, Dumnicka P, Gala-Błądzińska A, Gawlik K, Pawlica-Gosiewska D, et al. Malnutrition, inflammation, atherosclerosis syndrome (MIA) and diet recommendations among end-stage renal disease patients treated with maintenance hemodialysis. Nutrients. 2018;10:69.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stenvinkel P, Heimbürger O, Paultre F, Diczfalusy U, Wang T, Berglund L, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55:1899–911.

    Article  CAS  PubMed  Google Scholar 

  50. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21:300–7.e302.

    Article  PubMed  Google Scholar 

  51. Elder M, Moonen A, Crowther S, Aleksova J, Center J, Elder GJ. Chronic kidney disease-related sarcopenia as a prognostic indicator in elderly haemodialysis patients. BMC Nephrol. 2023;24:138.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Göbl C, Tura A. Focus on nutritional aspects of sarcopenia in diabetes: current evidence and remarks for future research. Nutrients. 2022;14:312.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gärtner S, Kraft M, Krüger J, Vogt LJ, Fiene M, Mayerle J, et al. Geriatric nutritional risk index correlates with length of hospital stay and inflammatory markers in older inpatients. Clin Nutr. 2017;36:1048–53.

    Article  PubMed  Google Scholar 

  54. Hao X, Li D, Zhang N. Geriatric Nutritional Risk Index as a predictor for mortality: a meta-analysis of observational studies. Nutr Res. 2019;71:8–20.

    Article  CAS  PubMed  Google Scholar 

  55. Barbeito-Andrés J, Pezzuto P, Higa LM, Dias AA, Vasconcelos JM, Santos TMP, et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci Adv. 2020;6:eaaw6284.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Soysal P, Veronese N, Arik F, Kalan U, Smith L, Isik AT. Mini Nutritional Assessment Scale-Short Form can be useful for frailty screening in older adults. Clin Int Aging. 2019;14:693–9.

    Article  Google Scholar 

  57. Naber TH, Schermer T, de Bree A, Nusteling K, Eggink L, Kruimel JW, et al. Prevalence of malnutrition in nonsurgical hospitalized patients and its association with disease complications. Am J Clin Nutr. 1997;66:1232–9.

    Article  CAS  PubMed  Google Scholar 

  58. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ayumi Kanno for her assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

KT wrote the paper with input from all authors. All authors have approved the manuscript. Research idea and study design: KT; data acquisition: HK, HS; data analysis/interpretation: KT, HK, HE, HS, KW, SK, MS, KA, TW; statistical analysis: KT, HK; supervision or mentorship: JK.

Corresponding author

Correspondence to Kenichi Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics

This study protocol complied with the Declaration of Helsinki and was approved by the ethics committee at Fukushima Medical University (acceptance no. 2001). All patients received an explanation of the procedures and possible risks of this study and provided written, informed consent to participate in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Kimura, H., Ejiri, H. et al. Geriatric Nutritional Risk Index is associated with adverse outcomes in patients with hypertension: the Fukushima Cohort study. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01716-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01716-5

Keywords

Search

Quick links