Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Special issue: Renal denervation: Evidence and challenges in clinical practice
  • Published:

Effects of renal denervation on the kidney: albuminuria, proteinuria, and renal function

Abstract

Renal denervation has attracted attention as a novel antihypertensive treatment for hypertensive patients who are poorly controlled by medicine. Clinical studies have shown the antihypertensive effects of renal denervation in patients with treatment-resistant hypertension. However, renal denervation potentially has other beneficial effects, such as improving glucose metabolism and cardioprotection beyond its antihypertensive effects. In this mini-review article, we summarize and discuss the effects of renal denervation on proteinuria, albuminuria, and renal function based on the recent findings of clinical studies, and review the renoprotective effects of renal denervation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  2. Collaboration NCDRF. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

    Article  Google Scholar 

  3. Faber JE, Brody MJ. Neural contribution to renal hypertension following acute renal artery stenosis in conscious rats. Hypertension. 1983;5:I155–64.

    Article  CAS  PubMed  Google Scholar 

  4. Katholi RE, McCann WP, Woods WT. Intrarenal adenosine produces hypertension via renal nerves in the one-kidney, one clip rat. Hypertension. 1985;7:I88–93.

    Article  CAS  PubMed  Google Scholar 

  5. Sata Y, Head GA, Denton K, May CN, Schlaich MP. Role of the sympathetic nervous system and its modulation in renal hypertension. Front Med. 2018;5:82.

    Article  Google Scholar 

  6. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  7. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45.

    Article  PubMed  Google Scholar 

  8. Bohm, Kario M, Kandzari K, Mahfoud DE, Weber MA F, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–51.

    Article  PubMed  Google Scholar 

  9. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397:2476–86.

    Article  CAS  PubMed  Google Scholar 

  10. Kandzari, Bohm DE, Mahfoud M, Townsend F, Weber MA RR, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  11. Rafiq K, Fujisawa Y, Sherajee SJ, Rahman A, Sufiun A, Kobori H, et al. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia. 2015;58:2885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.

    Article  CAS  PubMed  Google Scholar 

  13. Xia Z, Han L, Pellegrino PR, Schiller AM, Harrold LD, Lobato RL, et al. Safety and efficacy of renal denervation in patients with heart failure with reduced ejection fraction (HFrEF): a systematic review and meta-analysis. Heliyon. 2022;8:e08847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morisawa N, Kitada K, Fujisawa Y, Nakano D, Yamazaki D, Kobuchi S, et al. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res. 2020;43:482–91.

    Article  CAS  PubMed  Google Scholar 

  15. Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int. 2015;87:116–27.

    Article  CAS  PubMed  Google Scholar 

  16. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nabi AH, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S, et al. Improvement of albuminuria after renal denervation. Int J Cardiol. 2014;173:311–5.

    Article  PubMed  Google Scholar 

  18. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang ZH, Yang K, Jiang FL, Zeng LX, Jiang WH, Wang XY. The effects of catheter-based radiofrequency renal denervation on renal function and renal artery structure in patients with resistant hypertension. J Clin Hypertens. 2014;16:599–605.

    Article  Google Scholar 

  20. Kiuchi MG, Graciano ML, Carreira MA, Kiuchi T, Chen S, Lugon JR. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J Clin Hypertens. 2016;18:190–6.

    Article  Google Scholar 

  21. Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, et al. Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol. 2015;22:558–67.

    Article  PubMed  Google Scholar 

  22. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23:1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hameed MA, Freedman JS, Watkin R, Ganeshan A, Dasgupta I. Renal denervation using carbon dioxide renal angiography in patients with uncontrolled hypertension and moderate to severe chronic kidney disease. Clin Kidney J. 2017;10:778–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasad B, Berry W, Goyal K, Dehghani P, Townsend RR. Central blood pressure and pulse wave velocity changes post renal denervation in patients with stages 3 and 4 chronic kidney disease: The Regina RDN Study. Can J Kidney Health Dis. 2019;6:2054358119828388.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xia M, Liu T, Chen D, Huang Y. Efficacy and safety of renal denervation for hypertension in patients with chronic kidney disease: a meta-analysis. Int J Hyperth. 2021;38:732–42.

    Article  CAS  Google Scholar 

  26. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36:219–27.

    Article  PubMed  Google Scholar 

  27. Oliveras A, Armario P, Sans L, Clara A, Vazquez S, Molina L, et al. Organ damage changes in patients with resistant hypertension randomized to renal denervation or spironolactone: The DENERVHTA (Denervacion en Hipertension Arterial) study. J Clin Hypertens. 2018;20:69–75.

    Article  CAS  Google Scholar 

  28. Sanders MF, Reitsma JB, Morpey M, Gremmels H, Bots ML, Pisano A, et al. Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transpl. 2017;32:1440–7.

    Article  CAS  Google Scholar 

  29. Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet. 2022;399:1401–10.

    Article  CAS  PubMed  Google Scholar 

  30. Ott C, Mahfoud F, Mancia G, Narkiewicz K, Ruilope LM, Fahy M, et al. Renal denervation in patients with versus without chronic kidney disease: results from the Global SYMPLICITY Registry with follow-up data of 3 years. Nephrol Dial Transpl. 2022;37:304–10.

    Article  Google Scholar 

  31. Mohammad AA, Nawar K, Binks O, Abdulla MH. Effects of renal denervation on kidney function in patients with chronic kidney disease: a systematic review and meta-analysis. J Hum Hypertens. 2024;38:29–44.

    Article  PubMed  Google Scholar 

  32. Sharafuddin MJ, Marjan AE. Current status of carbon dioxide angiography. J Vasc Surg. 2017;66:618–37.

    Article  PubMed  Google Scholar 

  33. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T, et al. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens. 2015;33:1261–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mahfoud F, Townsend RR, Kandzari DE, Kario K, Schmieder RE, Tsioufis K, et al. Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021;77:2909–19.

    Article  CAS  PubMed  Google Scholar 

  35. Solbu MD, Miroslawska A, Norvik JV, Eriksen BO, Steigen TK. Kidney function and markers of renal damage after renal denervation. Does method of measurement matter? The Reshape CV-Risk Study. J Clin Hypertens. 2021;23:954–62.

    Article  CAS  Google Scholar 

  36. Lang D, Nahler A, Lambert T, Grund M, Kammler J, Kellermair J, et al. Anti-inflammatory effects and prediction of blood pressure response by baseline inflammatory state in catheter-based renal denervation. J Clin Hypertens. 2016;18:1173–9.

    Article  CAS  Google Scholar 

  37. Lee H. Cystatin C in pregnant women is not a simple kidney filtration marker. Kidney Res Clin Pr. 2018;37:313–4.

    Article  Google Scholar 

  38. Xin C, Xie J, Fan H, Sun X, Shi B. Association between serum cystatin C and thyroid diseases: a systematic review and meta-analysis. Front Endocrinol. 2021;12:766516.

    Article  Google Scholar 

  39. Okura T, Jotoku M, Irita J, Enomoto D, Nagao T, Desilva VR, et al. Association between cystatin C and inflammation in patients with essential hypertension. Clin Exp Nephrol. 2010;14:584–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was partially supported by a Basic Research Grant of the Japanese Society of Hypertension (KK).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KK; investigation, DY, YK, and KK; writing—original draft preparation, DY and KK; writing—review & editing, DY, YK, and KK; supervision, YK, and KK; funding acquisition, KK.

Corresponding author

Correspondence to Kento Kitada.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, D., Konishi, Y. & Kitada, K. Effects of renal denervation on the kidney: albuminuria, proteinuria, and renal function. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01709-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01709-4

Keywords

Search

Quick links