Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease

Abstract

Worldwide, hypertension and chronic kidney disease (CKD) are highly prevalent disorders and are strong risk factors for cardiovascular disease and end-stage renal disease (ESRD). The developmental origins of health and disease (DOHAD) concept suggests that undesirable perinatal environmental conditions, such as malnutrition, contribute to disease development in adults. Among the known hypertension and CKD risk factors, DOHAD plays a potential role in determining susceptibility to the onset of these diseases in later adulthood. Since low birth weight (LBW) is a surrogate marker for adverse fetal environmental conditions, the high incidence of LBW in developing countries and its increasing incidence in most developed countries (attributed to multiple pregnancies and prepregnancy maternal factors, such as undernutrition, advanced maternal age, and smoking) is concerning. Thus, LBW is an important public health problem not only because of the associated infant mortality and morbidity but also because it is a risk factor for adult-onset hypertension/CKD. During their reproductive years, pregnant women who were born with LBWs have an increased risk of hypertensive disorders of pregnancy, which contribute to the risk of developing cardiovascular disease and ESRD. The offspring of LBW females are also likely to be LBW, which suggests that susceptibility to hypertension/CKD may reflect transgenerational inheritance. Therefore, there is global concern about the increasing prevalence of LBW-related diseases. This review summarizes the relevance of hypertension and CKD in conjunction with DOHAD and discusses recent studies that have examined the impact of the upward LBW trend on renal function and blood pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential hypertension. Lancet. 2003;361:1629–41.

    PubMed  Google Scholar 

  2. Yoon SS, Gu Q, Nwankwo T, Wright JD, Hong Y, Burt V. Trends in blood pressure among adults with hypertension: United States, 2003 to 2012. Hypertension. 2015;65:54–61.

    CAS  PubMed  Google Scholar 

  3. Coresh J. Update on the Burden of CKD. J Am Soc Nephrol. 2017;28:1020–2.

    PubMed  PubMed Central  Google Scholar 

  4. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS ONE. 2016;11:e0158765.

    PubMed  PubMed Central  Google Scholar 

  5. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71. https://doi.org/10.1016/S0140-6736(14)61682-2.

  6. Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385:1975–82.

    PubMed  Google Scholar 

  7. Itoh H, Hayashi K, Miyashita K. Pre-emptive medicine for hypertension and its prospects. Hypertens Res. 2019;42:301–5.

    PubMed  Google Scholar 

  8. Sata F., Fukuoka H., Hanson M. (eds) Pre-emptive Medicine: Public Health Aspects of Developmental Origins of Health and Disease. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2194-8_4.

  9. World Health Organization. Global Nutrition Targets 2025: low birth weight policy brief. 2014. https://www.who.int/nutrition/publications/globaltargets2025_policybrief_lbw/en/. http://apps.who.int/iris/bitstream/10665/44844/1/9789241564441_eng.pdf.

  10. Luyckx VA, Brenner BM. Birth weight, malnutrition and kidney-associated outcomes—a global concern. Nat Rev Nephrol. 2015;11:135–49.

    PubMed  Google Scholar 

  11. Organization for Economic Coperation and Development. OECD Family Database. 2019. https://www.oecd.org/els/family/CO_1_3_Low_birth_weight.pdf.

  12. Ohmi H, Hirooka K, Hata A, Mochizuki Y. Recent trend of increase in proportion of low birthweight infants in Japan. Int J Epidemiol. 2001;30:1269–71.

    CAS  PubMed  Google Scholar 

  13. Ministry of Health, Labour and Welfare. Vital Statistics in Japan. 2019. http://www.mhlw.go.jp/english/database/db-hw/vs01.html. http://www.mhlw.go.jp/english/database/db-hw/dl/81-1a2en.pdf.

  14. Lim J, Park HS. Trends in the prevalence of underweight, obesity, abdominal obesity and their related lifestyle factors in Korean young adults, 1998–2012. Obes Res Clin Pr. 2018;12:358–64.

    Google Scholar 

  15. Normile D. Staying slim during pregnancy carries a price. Science. 2018;361:440.

    CAS  PubMed  Google Scholar 

  16. Kanda T, Takeda A, Hirose H, Abe T, Urai H, Inokuchi M, et al. Temporal trends in renal function and birthweight in Japanese adolescent males (1998-2015). Nephrol Dial Transpl. 2018;33:304–10.

    CAS  Google Scholar 

  17. Ministry of Education, Cultutre, Sports, Science and Technology. Annual Report of School Health Statistics Research. 2019. https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00400002&tstat=000001011648&cycle=0&tclass1=000001020135&stat_infid=000007567248.).

  18. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    CAS  PubMed  Google Scholar 

  19. Schulz LC. The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci USA. 2010;107:16757–8.

    CAS  PubMed  Google Scholar 

  20. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    CAS  PubMed  Google Scholar 

  21. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(Suppl 5):1344s–52s.

    CAS  PubMed  Google Scholar 

  23. Hanson M. The birth and future health of DOHaD. J Dev Orig Health Dis. 2015;6:434–7.

    CAS  PubMed  Google Scholar 

  24. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28:2838–44.

    PubMed  PubMed Central  Google Scholar 

  25. Khalsa DD, Beydoun HA, Carmody JB. Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatr Nephrol. 2016;31:1509–16.

    PubMed  Google Scholar 

  26. Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW. Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. Am J Kidney Dis. 2008;51:10–20.

    PubMed  Google Scholar 

  27. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54:248–61.

    PubMed  Google Scholar 

  28. Das SK, Mannan M, Faruque AS, Ahmed T, McIntyre HD, Al Mamun A. Effect of birth weight on adulthood renal function: a bias-adjusted meta-analytic approach. Nephrology. 2016;21:547–65.

    CAS  PubMed  Google Scholar 

  29. Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C, et al. Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int. 2013;84:1262–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019;365:l1346.

    PubMed  PubMed Central  Google Scholar 

  31. Ikezumi Y, Suzuki T, Karasawa T, Yamada T, Hasegawa H, Nishimura H, et al. Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis. Am J Nephrol. 2013;38:149–57.

    PubMed  Google Scholar 

  32. Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2009;4:71–6.

    PubMed  PubMed Central  Google Scholar 

  33. Rossing P, Tarnow L, Nielsen FS, Hansen BV, Brenner BM, Parving H-H. Low birth weight: a risk factor for development of diabetic nephropathy? Diabetes. 1995;44:1405–7.

    CAS  PubMed  Google Scholar 

  34. Koike K, Ikezumi Y, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, et al. Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. Clin J Am Soc Nephrol. 2017;12:585–90.

    PubMed  PubMed Central  Google Scholar 

  35. Nelson RG, Morgenstern H, Bennett PH. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am J Epidemiol. 1998;148:650–6.

    CAS  PubMed  Google Scholar 

  36. Knop Marianne R, Geng TT, Gorny Alexander W, Ding R, Li C, Ley Sylvia H, et al. Birth weight and risk of type 2 diabetes mellitus, cardiovascular disease, and hypertension in adults: a meta‐analysis of 7,646,267 participants from 135 studies. J Am Heart Assoc. 2018;7:e008870.

    PubMed  PubMed Central  Google Scholar 

  37. Levine RS, Hennekens CH, Jesse MJ. Blood pressure in prospective population based cohort of newborn and infant twins. BMJ. 1994;308:298–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cruickshank J, Mzayek F, Liu L, Kieltyka L, Sherwin R, Webber L, et al. Origins of the “black/white” difference in blood pressure: roles of birth weight, postnatal growth, early blood pressure, and adolescent body size: the Bogalusa heart study. Circulation. 2005;111:1932–7.

    CAS  PubMed  Google Scholar 

  39. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59:226–34.

    PubMed  Google Scholar 

  40. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

    CAS  PubMed  Google Scholar 

  41. Murai-Takeda A, Kanda T, Azegami T, Hirose H, Inokuchi M, Tokuyama H, et al. Low birth weight is associated with decline in renal function in Japanese male and female adolescents. Clin Exp Nephrol. 2019. https://doi.org/10.1007/s10157-019-01784-9.

  42. Kawabe H, Shibata H, Hirose H, Tsujioka M, Saito I, Saruta T. Sexual differences in relationships between birth weight or current body weight and blood pressure or cholesterol in young Japanese students. Hypertens Res. 1999;22:169–72.

    CAS  PubMed  Google Scholar 

  43. Mori M, Mori H, Yamori Y, Tsuda K. Low birth weight as cardiometabolic risk in Japanese high school girls. J Am Coll Nutr. 2012;31:39–44.

    CAS  PubMed  Google Scholar 

  44. Hovi P, Andersson S, Eriksson JG, Jarvenpaa AL, Strang-Karlsson S, Makitie O, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med. 2007;356:2053–63.

    CAS  PubMed  Google Scholar 

  45. Hovi P, Andersson S, Räikkönen K, Strang-Karlsson S, Järvenpää A-L, Eriksson JG, et al. Ambulatory blood pressure in young adults with very low birth weight. J Pediatrics. 2010;156:54–9. e51

    Google Scholar 

  46. Kawabe H, Azegami T, Takeda A, Kanda T, Saito I, Saruta T, et al. Features of and preventive measures against hypertension in the young. Hypertens Res. 2019;42:935–48.

    PubMed  Google Scholar 

  47. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hote JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. 1991;40(Suppl 2):115–20.

    CAS  PubMed  Google Scholar 

  48. Kanzaki G, Tsuboi N, Haruhara K, Koike K, Ogura M, Shimizu A, et al. Factors associated with a vicious cycle involving a low nephron number, hypertension and chronic kidney disease. Hypertens Res. 2015;38:633–41.

    CAS  PubMed  Google Scholar 

  49. Denic A, Mathew J, Lerman LO, Lieske JC, Larson JJ, Alexander MP, et al. Single-nephron glomerular filtration rate in healthy adults. N Engl J Med. 2017;376(24):2349–57.

    PubMed  PubMed Central  Google Scholar 

  50. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–47.

    CAS  PubMed  Google Scholar 

  51. Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney Int. 2005;68:S68–77.

    Google Scholar 

  52. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest. 1991;64:777–84.

    CAS  PubMed  Google Scholar 

  53. Manalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000;58:770–3.

    CAS  PubMed  Google Scholar 

  54. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22:1365–74.

    PubMed  PubMed Central  Google Scholar 

  55. Hoy WE, Hughson MD, Singh G, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 2006;70:104–10.

    CAS  PubMed  Google Scholar 

  56. Kanzaki G, Puelles VG, Cullen-McEwen LA, Hoy WE, Okabayashi Y, Tsuboi N, et al. New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight. 2017;2:e94334. https://doi.org/10.1172/jci.insight.94334.

  57. de Boer MP, Ijzerman RG, de Jongh RT, Eringa EC, Stehouwer CD, Smulders YM, et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults. Hypertension. 2008;51:928–32.

    PubMed  Google Scholar 

  58. Kistner A, Jacobson L, Jacobson SH, Svensson E, Hellstrom A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr Res. 2002;51:675–80.

    PubMed  Google Scholar 

  59. Mitchell P, Liew G, Rochtchina E, Wang JJ, Robaei D, Cheung N, et al. Evidence of arteriolar narrowing in low-birth-weight children. Circulation. 2008;118:518–24.

    PubMed  Google Scholar 

  60. Martyn C, Greenwald S. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;350:953–55.

    CAS  PubMed  Google Scholar 

  61. Jayet PY, Rimoldi SF, Stuber T, Salmon CS, Hutter D, Rexhaj E, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122:488–94.

    PubMed  Google Scholar 

  62. Goodfellow J, Bellamy MF, Gorman ST, Brownlee M, Ramsey MW, Lewis MJ, et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res. 1998;40:600–6.

    CAS  PubMed  Google Scholar 

  63. Asada N, Tsukahara T, Furuhata M, Matsuoka D, Noda S, Naganuma K, et al. Polycythemia, capillary rarefaction, and focal glomerulosclerosis in two adolescents born extremely low birth weight and premature. Pediatr Nephrol. 2017;32:1275–8.

    PubMed  Google Scholar 

  64. Abdulmahdi W, Rabadi MM, Jules E, Marghani Y, Marji N, Leung J, et al. Kidney dysfunction in the low-birth weight murine adult: implications of oxidative stress. Am J Physiol-Ren Physiol. 2018;315:F583–94.

    CAS  Google Scholar 

  65. Tennant IA, Barnett AT, Thompson DS, Kips J, Boyne MS, Chung EE, et al. Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition. Hypertension. 2014;64:664–71.

    CAS  PubMed  Google Scholar 

  66. Lane RH. Fetal programming, epigenetics, and adult onset disease. Clin Perinatol. 2014;41:815–31.

    PubMed  Google Scholar 

  67. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105:17046–9.

    CAS  PubMed  Google Scholar 

  68. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rangel M, dos Santos JC, Ortiz PH, Hirata M, Jasiulionis MG, Araujo RC, et al. Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter. PLoS ONE. 2014;9:e106138.

    PubMed  PubMed Central  Google Scholar 

  70. Bogdarina I, Haase A, Langley-Evans S, Clark AJ. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS ONE. 2010;5:e9237.

    PubMed  PubMed Central  Google Scholar 

  71. El-Dahr SS. DNA methylation links intrauterine stress with abnormal nephrogenesis. Nat Rev Nephrol. 2019;15:196.

    PubMed  PubMed Central  Google Scholar 

  72. Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol. 2019;30:63–78.

    CAS  PubMed  Google Scholar 

  73. IJzerman RG, Stehouwer CD, De Geus EJ, Van Weissenbruch MM, Delemarre-van de Waal HA, Boomsma DI. Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation. 2003;108:566–71.

    PubMed  Google Scholar 

  74. Intapad S, Tull FL, Brown AD, Dasinger JH, Ojeda NB, Fahling JM, et al. Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension. 2013;61:828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jansson T, Lambert GW. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months of age. J Hypertens. 1999;17:1239–48.

    CAS  PubMed  Google Scholar 

  76. Coats LE, Davis GK, Newsome AD, Ojeda NB, Alexander BT. Low birth weight, blood pressure and renal susceptibility. Curr Hypertens Rep. 2019;21:62.

    PubMed  Google Scholar 

  77. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20.

    PubMed  Google Scholar 

  78. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410–5.

    CAS  PubMed  Google Scholar 

  79. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension. 2016;68:974–81.

    CAS  PubMed  Google Scholar 

  80. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.

    PubMed  PubMed Central  Google Scholar 

  81. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE. Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int. 2006;69:671–8.

    CAS  PubMed  Google Scholar 

  82. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11:319–29.

    CAS  PubMed  Google Scholar 

  83. Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J. Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int. 2004;66:2148–54.

    CAS  PubMed  Google Scholar 

  84. Li S, Chen SC, Shlipak M, Bakris G, McCullough PA, Sowers J, et al. Low birth weight is associated with chronic kidney disease only in men. Kidney Int. 2008;73:637–42.

    CAS  PubMed  Google Scholar 

  85. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, et al. Creatinine-based equation to estimate the glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol. 2014;18:626–33.

    CAS  PubMed  Google Scholar 

  86. Nagai M, Ohkubo T, Murakami Y, Takashima N, Kadota A, Miyagawa N, et al. Secular trends of the impact of overweight and obesity on hypertension in Japan, 1980–2010. Hypertens Res. 2015;38:790.

    PubMed  Google Scholar 

  87. Gluckman PD, Seng CY, Fukuoka H, Beedle AS, Hanson MA. Low birthweight and subsequent obesity in Japan. Lancet. 2007;369:1081–2.

    PubMed  Google Scholar 

  88. Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54:2056–63.

    CAS  PubMed  Google Scholar 

  89. Klebanoff MA, Secher NJ, Mednick BR, Schulsinger C. Maternal size at birth and the development of hypertension during pregnancy: a test of the Barker hypothesis. Arch Intern Med. 1999;159:1607–12.

    CAS  PubMed  Google Scholar 

  90. Innes KE, Marshall JA, Byers TE, Calonge N. A woman’s own birth weight and gestational age predict her later risk of developing preeclampsia, a precursor of chronic disease. Epidemiology. 1999;10:153–60.

    CAS  PubMed  Google Scholar 

  91. Vikse BE. Pre-eclampsia and the risk of kidney disease. Lancet. 2013;382:104–6.

    PubMed  Google Scholar 

  92. Gallo LA, Tran M, Master JS, Moritz KM, Wlodek ME. Maternal adaptations and inheritance in the transgenerational programming of adult disease. Cell Tissue Res. 2012;349:863–80.

    CAS  PubMed  Google Scholar 

  93. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.

    CAS  PubMed  Google Scholar 

  94. Briffa JF, Wlodek ME, Moritz KM. Transgenerational programming of nephron deficits and hypertension. Paper presented at: Seminars in cell & developmental biology 2018.

  95. Qian M, Chou S-Y, Gimenez L, Liu J-T. The intergenerational transmission of low birth weight and intrauterine growth restriction: a large cross-generational cohort study in Taiwan. Matern Child Health J. 2017;21:1512–21.

    PubMed  Google Scholar 

  96. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension. 2013;62:614–20.

    CAS  PubMed  Google Scholar 

  98. Kazmi N, Sharp GC, Reese SE, Vehmeijer FO, Lahti J, Page CM, et al. Hypertensive disorders of pregnancy and DNA methylation in newborns. Hypertension. 2019;74:375–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Luyckx VA, Perico N, Somaschini M, Manfellotto D, Valensise H, Cetin I, et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet. 2017;390:424–8.

    PubMed  PubMed Central  Google Scholar 

  100. Crump C. Medical history taking in adults should include questions about preterm birth. BMJ. 2014;349:g4860.

    PubMed  Google Scholar 

  101. Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9:2036–43.

    PubMed  PubMed Central  Google Scholar 

  102. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.

    PubMed  Google Scholar 

  103. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318:427–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lurbe E, Garcia-Vicent C, Torro MI, Aguilar F, Redon J. Associations of birth weight and postnatal weight gain with cardiometabolic risk parameters at 5 years of age. Hypertension. 2014;63:1326–32.

    CAS  PubMed  Google Scholar 

  105. Intapad S, Dasinger JH, Johnson JM, Brown AD, Ojeda NB, Alexander BT. Male and female intrauterine growth-restricted offspring differ in blood pressure, renal function, and glucose homeostasis responses to a postnatal diet high in fat and sugar. Hypertension. 2019;73:620–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Luyckx VA, Compston CA, Simmen T, Mueller TF. Accelerated senescence in kidneys of low-birth-weight rats after catch-up growth. Am J Physiol-Ren Physiol. 2009;297:F1697–705.

    CAS  Google Scholar 

  107. Jones DW, Clark D 3rd, Hall ME. Preterm birth is associated with increased blood pressure in young adults: important opportunities for blood pressure management. J Am Heart Assoc. 2019;8:e013109.

    PubMed  PubMed Central  Google Scholar 

  108. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117:3171–80.

    PubMed  PubMed Central  Google Scholar 

  109. Zhang WB, Pincus Z. Predicting all-cause mortality from basic physiology in the Framingham Heart Study. Aging Cell. 2016;15:39–48.

    CAS  PubMed  Google Scholar 

  110. Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol-Ren Physiol. 2004;287:F262–7.

    CAS  Google Scholar 

  111. Hibino S, Abe Y, Watanabe S, Yamaguchi Y, Nakano Y, Tatsuno M, et al. Proteinuria caused by glomerular hypertension during adolescence associated with extremely premature birth: a report of two cases. Pediatr Nephrol. 2015;30:1889–92.

    PubMed  Google Scholar 

  112. Orskov B, Christensen KB, Feldt-Rasmussen B, Strandgaard S. Low birth weight is associated with earlier onset of end-stage renal disease in Danish patients with autosomal dominant polycystic kidney disease. Kidney Int. 2012;81:919–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanda, T., Murai-Takeda, A., Kawabe, H. et al. Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease. Hypertens Res 43, 859–868 (2020). https://doi.org/10.1038/s41440-020-0451-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0451-z

Keywords:

This article is cited by

Search

Quick links