Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms

Subjects

Abstract

Oral cancer (OC) is one of the most common cancers threatening human lives. However, OC pathogenesis has yet to be fully uncovered, and thus designing effective treatments remains difficult. Identifying genes related to OC is an important way for achieving this purpose. In this study, we proposed three computational models for inferring novel OC-related genes. In contrast to previously proposed computational methods, which lacked the learning procedures, each proposed model adopted a one-class learning algorithm, which can provide a deep insight into features of validated OC-related genes. A network embedding algorithm (i.e., node2vec) was applied to the protein–protein interaction network to produce the representation of genes. The features of the OC-related genes were used in the training of the one-class algorithm, and the performance of the final inferring model was improved through a feature selection procedure. Then, candidate genes were produced by applying the trained inferring model to other genes. Three tests were performed to screen out the important candidate genes. Accordingly, we obtained three inferred gene sets, any two of which were different. The inferred genes were also different from previous reported genes and some of them have been included in the public Oral Cancer Gene Database. Finally, we analyzed several inferred genes to confirm whether they are novel OC-related genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8:11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Katsanos KH, Giulia R, Alexandre B, Emmanuel D, Jean-Frédéric C.Oral cancer and oral precancerous lesions in inflammatory bowel diseases: a systematic review. J Crohns Colitis. 2015;9:1043–52.

    PubMed  Google Scholar 

  3. Alaizari NA, Al-Maweri SA. Oral cancer: knowledge, practices and opinions of dentists in yemen. Asian Pac J Cancer Prev. 2014;15:5627.

    PubMed  Google Scholar 

  4. Ghantous Y, Yaffi V, Abuelnaaj I. Oral cavity cancer: epidemiology and early diagnosis. Refuat Hapeh Vehashinayim. 2015;32:55.

    CAS  Google Scholar 

  5. Omura K. Current status of oral cancer treatment strategies: surgical treatments for oral squamous cell carcinoma. Int J Clin Oncol. 2014;19:423.

    CAS  PubMed  Google Scholar 

  6. Bernardes VF, Correa GTB, Loyola AM, Cardoso SV, Gomez RS, Gomes CC. STAG2 expression in oral cancer and potentially malignant lesions. Tumor Biol. 2014;35:3641–5.

    CAS  Google Scholar 

  7. Ren Y, Zhu H, Chi C, Yang F, Xu X. MiRNA-139 regulates oral cancer Tca8113 cells apoptosis through Akt signaling pathway. Int J Clin Exp Pathol. 2015;8:4588–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Emich H, Chapireau D, Hutchison I, Mackenzie I. The potential of CD44 as a diagnostic and prognostic tool in oral cancer. J Oral Pathol Med. 2015;44:393–400.

    CAS  PubMed  Google Scholar 

  9. Wang Z. The role of COX-2 in oral cancer development, and chemoprevention/ treatment of oral cancer by selective COX-2 inhibitors. Curr Pharm Des. 2005;11:1771–7.

    CAS  PubMed  Google Scholar 

  10. Mallick S, Agarwal J, Kannan S, Pawar S, Kane S, Teni T. Bcl-xL protein: predictor of complete tumor response in patients with oral cancer treated with curative radiotherapy. Head Neck. 2013;35:1448–53.

    PubMed  Google Scholar 

  11. Chien MH, Lin SSC, Tsung-Te Chung MD, Lin CH, Weng MS. Interleukin‐23 receptor polymorphism as a risk factor for oral cancer susceptibility. Head Neck. 2012;34:551–6.

    PubMed  Google Scholar 

  12. Balaji L, Lakkakula BV, Krishna BS, Paul SF. Lack of association of EPHX1 genotypes and haplotypes with oral cancer in South Indians. Genet Test Mol Biomarkers. 2011;15:595.

    CAS  PubMed  Google Scholar 

  13. Chen L, Yang J, Xing Z, Yuan F, Shu Y, Zhang Y, et al. An integrated method for the identification of novel genes related to oral cancer. PLoS ONE. 2017;12:e0175185.

    PubMed  PubMed Central  Google Scholar 

  14. Gormen TH, Leiserson CE, Rivest RL, Stein C, (eds). Introduction to algorithms. Cambridge, MA: MIT Press; 1990.

    Google Scholar 

  15. Chen L, Xing Z, Huang T, Shu Y, Huang G, Li H-P. Application of the shortest path algorithm for the discovery of breast cancer related genes. Curr Bioinform. 2016;11:51–8.

    CAS  Google Scholar 

  16. Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing. 2016;217:63–72.

    Google Scholar 

  17. Chen L, Liu T, Zhao X. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms. Biochim Biophys Acta Mol Basis Dis. 2018;1864:2228–40. 6, Part B

    CAS  PubMed  Google Scholar 

  18. Chen L, Zhang Y-H, Zhang Z, Huang T, Cai Y-D. Inferring novel tumor suppressor genes with a protein-protein interaction network and network diffusion algorithms. Mol Ther Methods Clin Dev. 2018;10:57–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008;82:949–58.

    PubMed  PubMed Central  Google Scholar 

  20. Li J, Chen L, Wang S, Zhang Y, Kong X, Huang T, et al. A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. Mol Genet Genomics. 2018;293:293–301.

    CAS  PubMed  Google Scholar 

  21. Lu S, Yan Y, Li Z, Chen L, Yang J, Zhang Y, et al. Determination of genes related to uveitis by utilization of the random walk with restart algorithm on a protein–protein interaction network. Int J Mol Sci. 2017;18:1045.

    PubMed Central  Google Scholar 

  22. Zhang J, Suo Y, Liu M, Xu X. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein–protein interaction network. Biochimica Biophysica Acta Mol Basis Dis. 2017;1864:2369–75. 6, Part B

    Google Scholar 

  23. Yuan F, Lu W. Prediction of potential drivers connecting different dysfunctional levels in lung adenocarcinoma via a protein–protein interaction network. Biochimica Biophysica Acta Mol Basis Dis. 2017;1864:2284–93. 6, Part B

    Google Scholar 

  24. Tax DM, Duin RP. Support vector domain description. Pattern Recognit Lett. 1999;20:1191–9.

    Google Scholar 

  25. Tax DM, Duin RP. Support vector data description. Mach Learn. 2004;54:45–66.

    Google Scholar 

  26. Duda RO, Peter EH. Pattern classification and scene analysis. Wiley: New York; 1973.

  27. Tax D. One-class classification. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands; 2001.

  28. Grover A and Leskovec J. node2vec: Scalable feature learning for networks. In: ACM Sigkdd international conference on knowledge discovery & data mining. New York, NY: ACM, USA; 2016.

  29. Levine AE, Steffen DL. OrCGDB: a database of genes involved in oral cancer. Nucleic Acids Res. 2001;29:300–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Consortium U. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013;41:D43–D47.

    Google Scholar 

  31. Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41:D970–D976.

    CAS  PubMed  Google Scholar 

  32. Hu L, Huang T, Shi X, Lu WC, Cai YD, Chou KC. Predicting functions of proteins in mouse based on weighted protein–protein interaction network and protein hybrid properties. PLoS ONE. 2011;6:e14556.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu LL, Huang T, Cai YD, Chou KC. Prediction of body fluids where proteins are secreted into based on protein interaction network. PLoS ONE. 2011;6:e22989.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu LL, Huang T, Liu XJ, Cai YD. Predicting protein phenotypes based on protein–protein interaction network. PLoS ONE. 2011;6:e17668.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai Y-D, Zhang Q, Zhang Y-H, Chen L, Huang T. Identification of genes associated with breast cancer metastasis to bone on a protein-protein interaction network with a shortest path algorithm. J Proteome Res. 2017;16:1027–38.

    CAS  PubMed  Google Scholar 

  36. Ng KL, Ciou JS, Huang CH. Prediction of protein functions based on function-function correlation relations. Comput Biol Med. 2010;40:300–5.

    CAS  PubMed  Google Scholar 

  37. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: International conference on learning representations. Scottsdale, Arizona, USA; 2013.

  38. Peng HC, Long FH, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27:1226–38.

    PubMed  Google Scholar 

  39. Liu HA, Setiono R. Incremental feature selection. Appl Intell. 1998;9:217–30.

    Google Scholar 

  40. Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci. 2018;306:136–44.

    CAS  PubMed  Google Scholar 

  41. Cai Y-D, Zhang S, Zhang Y-H, Pan X, Feng K, Chen L, et al. Identification of the gene expression rules that define the subtypes in glioma. J Clin Med. 2018;7:350.

    CAS  PubMed Central  Google Scholar 

  42. Chen L, Wang S, Zhang Y-H, Wei L, Xu X, Huang T, et al. Prediction of nitrated tyrosine residues in protein sequences by extreme learning machine and feature selection methods. Comb Chem High Throughput Screen. 2018;21:393–402.

    CAS  PubMed  Google Scholar 

  43. Chen L, Pan X, Zhang Y-H, Liu M, Huang T, Cai Y-D. Classification of widely and rarely expressed genes with recurrent neural network. Comput Struct Biotechnol J. 2019;17:49–60.

    CAS  PubMed  Google Scholar 

  44. Li J, Lu L, Zhang Y, Liu M, Chen L, Huang T, et al. Identification of synthetic lethality based on a functional network by using machine learning algorithms. J Cell Biochem. 2019;120:405–16.

    CAS  PubMed  Google Scholar 

  45. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinf. 2017;18:9.

    Google Scholar 

  46. Wang S, Zhang Q, Lu J, Cai Y-D. Analysis and prediction of nitrated tyrosine sites with the mRMR method and support vector machine algorithm. Current Bioinform. 2018;13:3–13.

    CAS  Google Scholar 

  47. Chen L, Wang S, Zhang Y-H, Li J, Xing Z-H, Yang J, et al. Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access. 2017;5:26582–90.

    Google Scholar 

  48. Liu L, Chen L, Zhang Y-H, Wei L, Cheng S, Kong X-Y, et al. Analysis and prediction of drug–drug interaction by minimum redundancy maximum relevance and incremental feature selection. J Biomol Struct Dyn. 2017;35:312–29.

    CAS  PubMed  Google Scholar 

  49. Chen L, Chu C, Zhang Y-H, Zheng M-Y, Zhu L, Kong X, et al. Identification of drug-drug interactions using chemical interactions. Curr Bioinform. 2017;12:526–34.

    CAS  Google Scholar 

  50. Chen L, Zeng W-M, Cai Y-D, Feng K-Y, Chou K-C. Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical–chemical interactions and similarities. PLoS ONE. 2012;7:e35254.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–D1056.

    Google Scholar 

  52. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007;8:R3.

    PubMed  PubMed Central  Google Scholar 

  54. Chen L, Zhang Y-H, Zheng M, Huang T, Cai Y-D. Identification of compound–protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Mol Genet Genomics. 2016;291:2065–79.

    CAS  PubMed  Google Scholar 

  55. Powers D. Evaluation: from precision, recall and f-measure to roc., informedness, markedness & correlation. J Mach Learn Technol. 2011;2:37–63.

    Google Scholar 

  56. Zhao X, Chen L, Guo Z-H, Liu T. Predicting drug side effects with compact integration of heterogeneous networks. Curr Bioinform. 2019. https://doi.org/10.2174/1574893614666190220114644.

    Google Scholar 

  57. Cui H, Chen L. A binary classifier for the prediction of EC numbers of enzymes. Curr Proteom. 2019;16:381–9.

    Google Scholar 

  58. Chien MH, Chang WM, Lee WJ, Chang YC, Lai TC, Chan DV, et al. A fas ligand (fasl)-fused humanized antibody against tumor-associated glycoprotein 72 selectively exhibits the cytotoxic effect against oral cancer cells with a low fasl/fas ratio. Mol Cancer Ther. 2017;16:1102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Costa FB, Cortez AP, de Avila RI, de Carvalho FS, Andrade WM, da Cruz AF, et al. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment. Biomed Pharmacother. 2018;102:481–93.

    CAS  PubMed  Google Scholar 

  60. Qin X, Kuang H, Chen L, Wei S, Yu D, Liang F. Coexpression of growth differentiation factor 11 and reactive oxygen species in metastatic oral cancer and its role in inducing the epithelial to mesenchymal transition. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:697–706.

    PubMed  Google Scholar 

  61. Scheff NN, Ye Y, Bhattacharya A, MacRae J, Hickman DN, Sharma AK, et al. Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation. Pain. 2017;158:2396–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin X, Khalid S, Qureshi MZ, Attar R, Yaylim I, Ucak I, et al. VEGF mediated signaling in oral cancer. Cell Mol Biol. 2016;62:64–8.

    CAS  PubMed  Google Scholar 

  63. Pal SK, Nguyen CT, Morita KI, Miki Y, Kayamori K, Yamaguchi A, et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med. 2016;45:730–9.

    CAS  PubMed  Google Scholar 

  64. Han G, Bian L, Li F, Cotrim A, Wang D, Lu J, et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med. 2013;19:421.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jeng J-H, Wang Y-J, Chiang B-L, Lee P-H, Chan C-P, Ho Y-S, et al. Roles of keratinocyte inflammation in oral cancer: regulating the prostaglandin E 2, interleukin-6 and TNF-α production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis. 2003;24:1301–15.

    CAS  PubMed  Google Scholar 

  66. Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RCK, et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 2005;24:4232.

    CAS  PubMed  Google Scholar 

  67. Oliveira LR, Ribeiro-Silva A. Prognostic significance of immunohistochemical biomarkers in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2011;40:298–307.

    CAS  PubMed  Google Scholar 

  68. Dus-Szachniewicz K, Wozniak M, Nelke K, Gamian E, Gerber H, Ziolkowski P. Protein tyrosine phosphatase receptor R and Z1 expression as independent prognostic indicators in oral squamous cell carcinoma. Head Neck. 2015;37:1816–22.

    PubMed  Google Scholar 

  69. Saintigny P, William WN, Jr., Foy JP, Papadimitrakopoulou V, Lang W, Zhang L et al. Met receptor tyrosine kinase and chemoprevention of oral cancer. J Natl Cancer Inst. 2018;110:250–7.

    PubMed Central  Google Scholar 

  70. Santosh AB, Jones T, Harvey J. A review on oral cancer biomarkers: Understanding the past and learning from the present. J Cancer Res Ther. 2016;12:486–92.

    CAS  PubMed  Google Scholar 

  71. Tanaka T, Iino M, Goto K. Knockdown of Sec8 enhances the binding affinity of c-Jun N-terminal kinase (JNK)-interacting protein 4 for mitogen-activated protein kinase kinase 4 (MKK4) and suppresses the phosphorylation of MKK4, p38, and JNK, thereby inhibiting apoptosis. FEBS J. 2014;281:5237–50.

    CAS  PubMed  Google Scholar 

  72. Li JM, Tseng CW, Lin CC, Law CH, Chien YA, Kuo WH, et al. Upregulation of LGALS1 is associated with oral cancer metastasis. Ther Adv Med Oncol. 2018;10:1758835918794622.

    PubMed  PubMed Central  Google Scholar 

  73. Palani CD, Ramanathapuram L, Lam-Ubol A, Kurago ZB. Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases ½. Oncotarget. 2018;9:6814–29.

    PubMed  Google Scholar 

  74. Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol. 2015;6:214.

    PubMed  PubMed Central  Google Scholar 

  75. Yan T, Lin Z, Jiang J, Lu S, Chen M, Que H, et al. MMP14 regulates cell migration and invasion through epithelial-mesenchymal transition in nasopharyngeal carcinoma. Am J Transl Res. 2015;7:950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jia LF, Wei SB, Mitchelson K, Gao Y, Zheng YF, Meng Z, et al. miR-34a inhibits migration and invasion of tongue squamous cell carcinoma via targeting MMP9 and MMP14. PLoS ONE. 2014;9:e108435.

    PubMed  PubMed Central  Google Scholar 

  77. Lien MY, Lin CW, Tsai HC, Chen YT, Tsai MH, Hua CH, et al. Impact of CCL4 gene polymorphisms and environmental factors on oral cancer development and clinical characteristics. Oncotarget. 2017;8:31424–34.

    PubMed  PubMed Central  Google Scholar 

  78. Sim JR, Kang SS, Lee D, Yun CH, Han SH. Killed whole-cell oral cholera vaccine induces ccl20 secretion by human intestinal epithelial cells in the presence of the short-chain fatty acid, butyrate. Front Immunol. 2018;9:55.

    PubMed  PubMed Central  Google Scholar 

  79. Simpson DR, Mell LK, Cohen EEW. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2015;51:291–8.

    CAS  PubMed  Google Scholar 

  80. Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, et al. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t (1; 19) translocation induces apoptosis. Oncogene. 2005;24:5396–400.

    CAS  PubMed  Google Scholar 

  81. Uraguchi M, Morikawa M, Shirakawa M, Sanada K, Imai K. Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J Dent Res. 2004;83:327.

    CAS  PubMed  Google Scholar 

  82. Yeh KT, Chang JG, Lin TH, Wang YF, Chang JY, Shih MC, et al. Correlation between protein expression and epigenetic and mutation changes of Wnt pathway-related genes in oral cancer. Int J Oncol. 2003;23:1001–7.

    CAS  PubMed  Google Scholar 

  83. Kawakita A, Yanamoto S, Yamada SI, Naruse T, Takahashi H, Kawasaki G, et al. MicroRNA-21 promotes oral cancer invasion via the Wnt/β-catenin pathway by targeting DKK2. Pathol Oncol Res. 2014;20:253–61.

    CAS  PubMed  Google Scholar 

  84. Pannone G, Bufo P, Santoro A, Franco R, Aquino G, Longo F, et al. WNT pathway in oral cancer: epigenetic inactivation of WNT-inhibitors. Oncol Rep. 2010;24:1035–41.

    CAS  PubMed  Google Scholar 

  85. Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers. 2014;6:333–65.

    PubMed  PubMed Central  Google Scholar 

  86. Arrigo AP, Gibert B. HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med. 2012;12:1151–63.

    CAS  PubMed  Google Scholar 

  87. Huang JS, Yao CJ, Chuang SE, Yeh CT, Lee LM, Chen RM, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245.

    PubMed  PubMed Central  Google Scholar 

  88. Kowshik J, Baba AB, Giri H, Deepak Reddy G, Dixit M, Nagini S. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer. PLoS ONE. 2014;9:e109114.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsai MH, Chen WC, Tsai CH, Hang LW, Tsai FJ. Interleukin‐4 gene, but not the interleukin‐1 beta gene polymorphism, is associated with oral cancer. J Clin Lab Anal. 2005;19:93–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Manchanda P, Sharma SC, Das SN. Differential regulation of IL-2 and IL-4 in patients with tobacco-related oral squamous cell carcinoma. Oral Dis. 2010;12:455–62.

    Google Scholar 

  91. Tash JS, Chakrasali R, Jakkaraj SR, Hughes J, Smith SK, Hornbaker K, et al. Gamendazole, an orally active indazole carboxylic acid male contraceptive agent, targets HSP90AB1 (HSP90BETA) and EEF1A1 (eEF1A), and stimulates Il1a transcription in rat sertoli cells1. Biol Reprod. 2008;78:1139–52.

    CAS  PubMed  Google Scholar 

  92. Abiko Y, Nishimura M, Kusano K, Nakashima K, Okumura K, Arakawa T, et al. Expression of MIP-3α/CCL20, a macrophage inflammatory protein in oral squamous cell carcinoma. Arch Oral Biol. 2003;48:171–5.

    CAS  PubMed  Google Scholar 

  93. Ishikawa T, Nakashiro K, Hara S, Klosek SK, Li C, Shintani S, et al. CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int J Oncol. 2006;28:61.

    CAS  PubMed  Google Scholar 

  94. Tanaka T, Imamura T, Yoneda M, Irie A, Ogi H, Nagata M, et al. Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1-NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int J Oncol. 2016;49:1377.

    CAS  PubMed  Google Scholar 

  95. Jablonska E, Piotrowski L, Grabowska Z. Serum levels of IL-lβ, IL-6, TNF-α, sTNF-RI and CRP in patients with oral cavity cancer. Pathol Oncol Res. 1997;3:126–9.

    PubMed  Google Scholar 

  96. Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L, Bucci E. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence ? Oral Oncol. 2004;40:120–30.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), National Key R&D Program of China (2018YFC0910403), National Natural Science Foundation of China (31701151, 61672356), Natural Science Foundation of Shanghai (17ZR1412500), Shanghai Sailing Program (16YF1413800), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2016245), the fund of the key Laboratory of Stem Cell Biology of Chinese Academy of Sciences (201703), Science and Technology Commission of Shanghai Municipality (STCSM) (18dz2271000), Scientific Research Fund of Hunan Provincial Education Department (18A394), and aid program for Science and Technology Innovative Research Team in Shaoyang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Dong Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, YH., Huang, G. et al. Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 26, 465–478 (2019). https://doi.org/10.1038/s41434-019-0099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0099-y

This article is cited by

Search

Quick links