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The unique environment of space (including microgravity) 
exposes long-duration spaceflight (LDSF) participants to numer-
ous physiologic challenges [1, 2]. In preparation for future crewed 
missions to the Moon and Mars, the National Aeronautics and 
Space Administration (NASA) Human Research Program has 
compiled a list of health risks associated with spaceflight [1]. 
One such risk, labelled as “red” for the highest priority, is a 
collection of neurologic and ophthalmic findings termed space-
flight associated neuro-ocular syndrome (SANS) [1–3]. The clinical 
and imaging findings of SANS include optic disc oedema, globe 
flattening, retinal nerve fibre layer thickening, chorioretinal folds, 
hyperopic shifts, and cotton-wool spots [4–6]. About 70% of all 
crewmembers who have participated in LDSF have demonstrated 
one or more of these neuro-ocular signs [6]. While the precise 
mechanism of SANS remains ill-defined, a major contributing 
factor is thought to be the cephalad fluid shift and subsequent 
venous congestion that occurs upon exposure to microgravity 
during LDSF [4–7].

Despite this redistribution of fluid towards the head, chronic 
elevation of intra-ocular pressure (IOP) has not been observed in 
astronauts on long-duration space flights [4–6]. A transient spike 
in IOP occurs as astronauts enter microgravity, followed by a 
decrease over the period of days to clinically normal levels 
[5, 6, 8]. This normalization of IOP during spaceflight occurs 
despite a sustained cephalad venous fluid shift [9]. A proposed 
explanation is a compensatory decrease in aqueous volume [5].

The conventional aqueous outflow pathway accounts for 
approximately 75–90% of aqueous outflow, in which aqueous 
humour flows through the trabecular meshwork (TM) into 
Schlemm’s canal (SC) before exiting the eye via episcleral veins 
[10]. According to the simplified Goldmann equation, factors 
affecting IOP include aqueous humour production, facility of 
trabecular outflow, and episcleral venous pressure [11]. As 
histologic studies indicate a strong correlation between outflow 
capacity and dimensions of outflow pathway sites, alterations in 
the morphology of the conventional outflow pathway could be a 
major contributor to the normalization of IOP in microgravity [12].

Advancements in ocular imaging allow for visualization of SC 
and the TM in vivo. Ultrasound biomicroscopy (UBM) enables 
imaging of anterior segment structures in high resolution using a 
higher frequency transducer than that of traditional ophthalmic 
ultrasound (a 50–100 MHz vs 10 MHz). With UBM, significant 
decreases in both the coronal diameter of SC and thickness of the 
TM in patients with primary open angle glaucoma (POAG) have 
been demonstrated [13]. Anterior segment optical coherence 
tomography (AS-OCT) is another newer modality that can 

produce cross-sectional images at an even higher resolution than 
UBM [14]. With these modalities, new avenues of investigation 
into physiologic changes in anterior segment structures have 
become available.

AS-OCT has been used to evaluate the therapeutic effect of 
medical and procedural treatments for terrestrial POAG. An 
increase in SC surface area by >90% was observed after treatment 
with a topical prostaglandin prodrug (travoprost), a medication 
approved to lower IOP in POAG, with maintenance of SC surface 
area seen up to 84 h following eye drop instillation [15]. In 
addition, laser treatments (e.g., selective laser trabeculoplasty) 
target expansion of SC cross-sectional area (CSA) and can 
decrease IOP from increased outflow facility [16, 17].

Physiologic alteration of the aqueous outflow apparatus 
morphology has been observed after exercise and during forced 
Valsalva manoeuvre. After aerobic exercise, increased TM thick-
ness and SC CSA have been imaged with AS-OCT [18]. This 
alteration in morphology, and its consequent increase in 
trabecular outflow facility is presumed to be a response to the 
IOP elevation induced by aerobic exercise [19]. An additional 
example of a physiologic compensation for increased IOP is the 
increase in SC CSA observed after subjects performed a Valsalva 
manoeuvre, a forceful exhalation against a closed airway that is 
associated with an elevation in IOP [20].

A longitudinal investigation of changes in the aqueous outflow 
pathway during microgravity may be useful in studying SANS 
during LDSF. Currently, head down tilt (HDT) bed rest (HDTBR) is a 
terrestrial analogue to microgravity. Supine subjects in bed are 
tilted down to produce a cephalad fluid shift [21]. Individuals 
following HDT have demonstrated a similar pattern of IOP 
normalization over time to that observed in astronauts [22]. Using 
AS-OCT, Chen et al. documented a decrease in SC CSA in 
individuals subject to brief HDT [23]. After 15 min of 20° HDT, IOP 
increased significantly from 14 to 17 mm Hg, and SC CSA 
decreased from a sitting value of 13449 µm2 to a posttest value 
of 9576 µm2. These changes in SC CSA may reflect what occurs as 
astronauts enter space, which would align with the observed 
transient spike in IOP. Both validation of these findings in space 
and longer duration HDT studies on Earth would contribute to 
our understanding of IOP regulation.

We propose to use AS-OCT and UBM to study the anterior 
segment in HDTBR and SANS. Because these modalities are 
noninvasive and produce high resolution cross-sections of the 
anterior segment, they would be suited for longitudinal assess-
ment of structural changes to SC and the TM. Previous studies 
have indicated that changes in the dimensions of SC and the TM 
are associated with changes in IOP (Table 1). Over a period of 
days, an increase in the dimensions of SC and the thickness of the 
TM may be contributing to increased aqueous outflow by 
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increasing trabecular outflow facility. An increase in outflow could 
explain the observed normalization of IOP that occurs during 
long-duration exposure to microgravity. Elucidation of this 
mechanism is also expected to provide novel insights into POAG 
pathophysiology, a disease with a mysterious aetiology despite 
being the second leading cause of blindness worldwide.
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