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ARTICLE OPEN

Effect of glucagon like peptide-1 receptor agonist exenatide, 
used as an intracranial pressure lowering agent, on cognition 
in Idiopathic Intracranial Hypertension
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BACKGROUND: Cognitive function can be affected in conditions with raised intracranial pressure (ICP) such as idiopathic 
intracranial hypertension (IIH). Drugs used off label to treat raised ICP also have cognitive side effects, underscoring the unmet 
need for effective therapeutics which reduce ICP without worsening cognition. The Glucagon Like Peptide-1 (GLP-1) receptor 
agonist, exenatide, has been shown to significantly reduce ICP in IIH, therefore this study aimed to determine the effects of 
exenatide on cognition in IIH.
METHODS: This was an exploratory study of the IIH:Pressure trial (ISTCRN 12678718). Women with IIH and telemetric ICP monitors 
(n = 15) were treated with exenatide (n = 7) or placebo (n = 8) for 12 weeks. Cognitive function was tested using the National 
Institute of Health Toolbox Cognitive Battery at baseline and 12 weeks.
RESULTS: Cognitive performance was impaired in fluid intelligence ((T-score of 50 = population mean), mean (SD) 37.20 (9.87)), 
attention (33.93 (7.15)) and executive function (38.07 (14.61)). After 12-weeks there was no evidence that exenatide compromised 
cognition (no differences between exenatide and placebo). Cognition improved in exenatide treated patients in fluid intelligence 
(baseline 38.4 (8.2), 12 weeks 52.9 (6.6), p = 0.0005), processing speed (baseline 43.7 (9.4), 12 weeks 58.4 (10.4), p = 0.0058) and 
episodic memory (baseline 49.4 (5.3), 12 weeks 62.1 (13.2), p = 0.0315).
CONCLUSIONS: In patients with raised ICP due to IIH, exenatide, a drug emerging as an ICP lowering agent, does not adversely 
impact cognition. This is encouraging and has potential to be relevant when considering prescribing choices to lower ICP.
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INTRODUCTION
Raised intracranial pressure (ICP) is a characteristic of numerous 
neurological disorders including traumatic brain injury (TBI) [1], 
stroke [2], subarachnoid haemorrhage [3], hydrocephalus and 
idiopathic intracranial hypertension (IIH) [4]. Severe headache, 
visual disturbances and pulsatile tinnitus are recognised features 
of raised ICP [5], however impairments in cognitive function are 
also well documented. A recent prospective case-control study in 
IIH highlighted deficits in executive function and attention, which 
were reversible with reductions of ICP [6]. Cognitive studies in 
patients with TBI and hydrocephalus have also identified 
impairments in problem-solving [7], executive function [8], 
short-term and working memory [9, 10].

There are currently no licensed treatments dedicated to 
reducing ICP. There are a number of existing drugs which are 
used off label to reduce ICP. A recent open label trial compared 
the efficacy of drugs currently used to lower ICP in IIH (amiloride, 
furosemide, spironolactone and topiramate) and found a 

marginal reduction in ICP with no difference between drugs 
[11]. Of concern, however, was that acetazolamide, spironolac-
tone and topiramate were demonstrated to have worsened 
cognitive function in participants [12]. Therefore there is an 
unmet need for therapeutics which can result in a clinically 
meaningful reduction in ICP without side effects which compro-
mise cognition.

Exenatide, a glucagon like peptide- 1 (GLP-1) receptor agonist, 
is an existing therapeutic agent used in the treatment of diabetes 
which has additional weight loss effects [13–15]. Exenatide has 
been recently shown to reduce cerebrospinal fluid (CSF) secretion 
and ICP [16]. Exenatide targets the GLP-1 receptors located at the 
choroid plexus epithelium, the structure responsible for the 
majority of CSF secretion in the brain [16, 17]. In vivo investigation 
demonstrated that GLP-1 receptor agonism with exenatide was 
able to reduce CSF secretion and ICP by at least 45% [16]. The 
in vivo response represented a greater reduction in ICP than that 
noted with other drugs commonly used in IIH [18]. A phase 2 
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randomised placebo controlled double-blind trial (IIH:Pressure 
trial) demonstrated the efficacy of exenatide at significantly 
reducing ICP, as measured using highly accurate telemetric ICP 
monitors, in people with IIH [19].

A number of commonly used off-label ICP lowering drugs, 
including acetazolamide and topiramate, have a deleterious effect 
on cognitive function [12, 20, 21]. The impact of exenatide on 
cognitive function in patients with raised ICP has not been 
explored. This is a pre-specified nested study of the IIH:Pressure 
trial that aimed to determine the effects of exenatide on 
cognition in a cohort of IIH patients with raised ICP.

METHODS
Trial design
This cognitive evaluation was an exploratory study of the IIH:Pressure trial. 
The IIH:Pressure trial was a prospective, randomised, parallel group, 
placebo-controlled trial to evaluate the effects of GLP-1 receptor agonist 
exenatide on ICP. The study was approved by the West Midlands—Solihull 
Research Ethics Committee (17/WM/0179) and all subjects provided 
written informed consent according to Declaration of Helsinki principles. 
The trial was registered with ISTCRN (12678718). Women with active IIH 
were identified and recruited from a single tertiary referral hospital 
(Queen Elizabeth Hospital, University Hospitals Birmingham NHS Founda-
tion Trust, United Kingdom). The results of the main trial have been 
previously published [19].

Participants
Women aged between 18 to 60 years who met the diagnostic criteria for 
IIH were recruited [22]. This included papilledema, a normal neurologic 
examination except for cranial nerve abnormalities, normal brain imaging 
without evidence of hydrocephalus or structural lesions, normal CSF 
composition, and elevated lumbar puncture opening pressure. All had 
normal brain imaging (apart from radiological signs of raised ICP), and this 
included magnetic resonance venography or computed tomography 
venography to exclude venous sinus thrombosis. All eligible patients had 
optic nerve head swelling in at least one eye and ICP >25cmH20. Those 
with significant medical co-morbidities, prior CSF diversion procedures, 
neurovascular stenting or optic nerve sheath fenestration, those currently 
using GLP-1 receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors or 
taking drugs that could reduce ICP were excluded. Those taking drugs 
that might influence ICP discontinued these at least a month prior to 
enrolment. Patients who were pregnant or those planning pregnancy 
were excluded, with urine human chorionic gonadotropin (HCG) checked 
at each study visit. Detailed enrolment criteria are provided in the 
Supplementary Table 1. All had telemetric ICP monitors (RaumedicTM, 
Germany) which were surgically implanted prior to the baseline visit. Of 
note, this approach to ICP monitoring was chosen by the patient advisory 
group due to the negative impact reported by repeated lumbar punctures 
[23, 24], and the use within the trial was carefully discussed with the 
individual participants during the consent process.

Randomisation and Study Treatment
Participants were randomised in a 1:1 ratio to either active treatment with 
exenatide (Byetta) or placebo using a computer-generated randomisation 
list compiled by the Birmingham Clinical Trials Unit. Treatment allocation 
was masked from the participant and investigators and a double check of 
allocation was performed by an unblinded nurse and pharmacist. The first 
dose was a loading dose of subcutaneous exenatide 20 mcg or equivalent 
volume of subcutaneous 0.9% saline placebo. Participants were dosed for 
12 weeks (self-administered at home) with either subcutaneous exenatide 
10 mcg or equivalent volume of placebo twice daily.

Cognitive tests
Cognitive testing was performed using the validated National Institute of 
Health (NIH) Toolbox Cognitive Battery (version 1.11) [25, 26]. The 
cognitive battery consisted of seven standardised testing paradigms 
which assess different cognitive domains: crystalised intelligence (relates 
to knowledge and experience) [27], auditory and oral language, fluid 
intelligence (abilities to process and integrate) [27], processing speed, 
working and episodic memory, and attention and executive function. It 
utilises a computer adaptive testing paradigm allowing assessments to be 

completed in 40 minutes. Scores are expressed as T-scores (a score of 50 is 
population mean and a score of +/−10 is one standard deviation from the 
mean). Individual scores are corrected for age, gender, educational 
attainment, and ethnicity [28]. The cognitive battery was administered by 
a trained team member in a controlled, quiet environment under standard 
lighting conditions (defined as well-lit, neutral illumination devoid of 
harsh shadows or glare). Testing was performed at baseline and after 
12 weeks of exenatide or placebo administration.

Statistical analyses
Statistical analysis of the cognitive tests was performed using Prism (Prism 
8 for MacOS, Graphpad, LCC, Version 8.4.0 (455)). This was an exploratory 
analysis of the IIH:Pressure trial, the power calculation has been published 
[19]. Analysis was by intention-to-treat. The normality of data were 
assessed using quantile-quantile plots and the Shapiro-Wilk test. Baseline 
cognitive scores were evaluated compared to population normal ranges. 
Baseline and 12-month cognitive testing in both exenatide and placebo 
groups were compared using two-tailed t-tests. For comparisons between 
placebo and exenatide two-tailed unpaired t tests were used. Statistical 
significance was considered at P  <  0.05 level (two-tailed). There was no 
missing cognitive data at baseline or 12 weeks.

Statement of ethics
The study was approved by the West Midlands - Solihull Research Ethics 
Committee (17/WM/0179) and all subjects provided written informed 
consent according to the Declaration of Helsinki principles. Participants 
were screened between 1 November 2017 and 17 September 2018. The 
trial was registered with ISTCRN (12678718).

RESULTS
Patient characteristics
All 15 participants were female, and randomly assigned to receive 
either exenatide (n = 7) or placebo (n = 8). Exenatide and placebo 
groups were matched for age (mean (standard deviation (SD) age 
of exenatide group 28 (13) years, placebo group 28 (6) years) and 
body mass index (BMI) (exenatide group 37.6 (7.9) kg/m2, placebo 
group 38.6 (4.7) kg/m2). Baseline ICP in the left lateral decubitus 
lumbar puncture (LP) position was similar between groups 
(exenatide group 30.7 (6.7) cmCSF, placebo group = 33.5 (5.6) 
cmCSF). Headache and visual parameters were also comparable 
between groups (Table 1). All randomised patients completed the 
12-week duration of the trial and drug compliance was full. ICP 
was significantly lower in the exenatide group compared to 
placebo after 12 weeks (exenatide 21.4 (4.0) cmCSF, placebo 26.0 
(4.4) cmCSF p = 0.058). There were no ICP lowering agents or 
addition of headache preventative drugs started during the study.

Cognitive performance at baseline
At baseline, performance in numerous cognitive tasks were 
impaired. These included the fluid intelligence test (T-Score mean 
(SD) 37.20 (9.87)), flanker inhibitory control and attention test, a 

Table 1. Clinical characteristics of study participants at baseline. BMI, 
body mass index; IQR, interquartile range; SD, standard deviation.

Exenatide Mean 
(SD)

Placebo Mean 
(SD)

Number (n) 7 8

Age (years) 28 (13) 28 (6)

BMI (kg/m2) 37.6 (7.9) 38.6 (4.7)

ICP (supine) mmHg 22.3 (3.6) 24.6 (4.1)

ICP (Lateral decubitus 
position) cmCSF

30.7 (6.7) 33.5 (5.6)

Frisén Grade (worst eye) 
median (IQR)

2 (1) 2.5 (1)

Monthly headache days 21.6 (5.2) 10.3 (8.5)
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test of attention (33.93 (7.15)) and dimensional change card sort 
test, a test of executive function (38.07 (14.61)). Cognitive 
domains that were unaffected included crystalized intelligence 
(51.3 (10.8)) and auditory language (54.8 (14.1)) (Fig. 1). The 
majority of other cognitive domains were unaffected at baseline 
(Table 2). Cognitive function was not significantly different 
between exenatide and placebo groups at baseline.

Cognitive function following 12-weeks exenatide versus 
placebo
The results from the trial describing the ability of exenatide to 
significantly lower ICP at 12 weeks have been previously 
published [19]. Following 12-weeks of treatment with the GLP-1 
receptor agonist exenatide, cognitive testing was repeated in 
participants. Cognitive performance in participants receiving 
exenatide significantly improved in the fluid intelligence domain 
(T-Score mean (SD) = baseline 38.4 (8.2), 12 weeks 52.9 (6.6), 
p = 0.0005, Fig. 2), processing speed (baseline 43.7 (9.4), 12 weeks 
58.4 (10.4), p = 0.0058) and episodic memory (baseline 49.4 (5.3), 
12 weeks 62.1 (13.2), p = 0.0315). Cognition did not significantly 
worsen in any of the domains.

In participants receiving placebo, there were significant 
improvements in several domains including crystal intelligence 
(baseline 49.6 (13.6), 12 weeks 56.1 (9.7), p = 0.0457, Fig. 1), fluid 
intelligence (baseline 36.1 (11.6), 12 weeks 48.3 (12.7), p = 0.0001), 

executive function (baseline 39.93 (13.1), 12 weeks 46.4 (15.4), 
p = 0.0362), processing speed (baseline 47.5 (12.4), 12 weeks 59.3 
(9.8), p = 0.0025) and working memory (baseline 40.3 (11.9), 
12 weeks 49.3 (9.1), p = 0.0239). There were no significant 
differences between the change in cognitive performance in 
the placebo versus exenatide groups (Fig. 2).

DISCUSSION
Conditions of raised pressure, such as IIH, are characterised by 
cognitive impairments which have been shown to be in association 
with raised ICP [6]. We report baseline cognitive impairments in IIH 
in fluid intelligence, attention and executive function. This is in 
agreement with previous assessments of cognition in IIH, where 
executive function is significantly impaired [6, 29]. In IIH, use of 
exenatide to reduce ICP did not have a negative impact on 
cognition at 12 weeks. This is encouraging as many of the existing 
drugs used to reduce ICP impact on cognitive function [20].

Drugs used commonly in IIH have been shown to worsen 
cognitive impairments in patients, with acetazolamide and 
topiramate worsening fluid intelligence [12]. Memory impairment 
has been reported with acetazolamide use [30], additionally 
several studies have identified impairments in language, working 
memory [31, 32], verbal fluency [32], Intelligence quotient, and 
verbal learning [21]. There is therefore an unmet clinical need for 

Fig. 1 Baseline and 12 week cognitive T-scores in placebo and exenatide groups. a T- score of 50 is considered the population mean and a 
score of +/−10 is one standard deviation from the mean. Placebo baseline (yellow) 12 weeks (orange), exenatide baseline (green) 12 weeks (blue).

Table 2. T-scores of cognitive domains tested in patients treated with placebo vs exenatide at baseline and 12 weeks. Results expressed as mean (SD). 
SD, standard deviation.

Cognitive domain All baseline Mean (SD) n = 15 Exenatide Mean (SD) n = 7 Placebo Mean (SD) n = 8

Baseline 12-weeks Baseline 12-weeks

Crystal Intelligence 51.3 (10.8) 53.1 (7.2) 55.6 (12.8) 49.6 (13.6) 56.1 (9.7)

Auditory Language 47.8 (10.4) 46.4 (11.9) 50.3 (12.5) 49.4 (9.1) 48.7 (11.5)

Oral Language 54.8 (14.1) 53.3 (16.6) 60.6 (14.2) 56.6 (11.6) 61.6 (14.3)

Fluid Intelligence 37.2 (9.9) 38.4 (8.2) 52.9 (6.6) 36.1 (11.6) 48.3 (12.7)

Attention & Executive Function 33.9 (7.1) 32.9 (5.2) 38.1 (9.8) 34.9 (8.7) 38.5 (10.8)

Executive Function 38.1 (14.6) 36.0 (17.0) 45.0 (12.0) 39.9 (13.1) 46.4 (15.4)

Processing Speed 45.7 (10.9) 43.7 (9.4) 58.4 (10.4) 47.5 (12.4) 59.3 (9.8)

Working Memory 43.9 (12.0) 48.1 (11.4) 56.9 (9.1) 40.3 (11.9) 49.3 (9.1)

Episodic Memory 46.7 (6.8) 49.4 (5.3) 62.1 (13.2) 44.4 (7.4) 50.9 (15.2)
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therapeutics which effectively reduce ICP without further 
impacting on cognitive function.

Exenatide did not enhance cognition compared to placebo in 
this study, however it did prevent deterioration of cognitive 
function unlike other drugs used to lower ICP [20]. It is possible 
that the therapeutic reduction of ICP in the exenatide arm 
impacted cognitive scores at 12 weeks, as a prior publication 
showed the beneficial effects of ICP reduction on cognition [6]. 
Studies have highlighted an association between headache 
severity and cognitive performance in IIH [6]. Exenatide has 
demonstrated the ability to headache frequency [19], however its 
role in headache in raised ICP is yet to be fully determined 
headaches severity were similar in both trial arms [19]. Of interest 
is the observation that exenatide exerts neuro-protective effects 
in animal and clinical studies of Alzheimer’s disease. Exenatide 
prevented cognitive decline in 5xFAD genetic Alzheimer’s mouse 
models [33], whist exendin-4 protected against amyloid-β peptide 
induced impairment of spatial memory and learning in rodents 
[34, 35]. A reduced incidence of Alzheimer’s disease was found in 
patients with type-2 diabetes taking exenatide [36], and a 2010 
trial was launched to investigate the effects of exenatide on 
cognitive performance and clinical progression of Alzheimer’s 
disease [37]. These findings warrants future investigation as to 
whether exenatide protects cognition via reduction of ICP or 
other neuroprotective mechanisms.

There are a number of factors and limitations to consider when 
appraising this study. Although not significant, we did identify 
improvements in the placebo group which were similar to those 
treated with exenatide. This may represent regression to the mean 
or be driven by a learning effect of the cognitive battery. However, 
we mitigated for this by using variations in the testing paradigms. 
Although it may be noted that a previous study found no 
improvement in cognitive function at three months in people with 
IIH, leading some believe that cognitive deficits in this condition 
were not reversible [38]. Finally we were not able to control for 
headache severity which is known to influence cognition in IIH [6], 

however, this would have impacted both trial arms as headaches 
scores were analogous in both trial arms at 12 weeks [19].

In conclusion, our findings suggest that exenatide, a drug 
emerging as an ICP lowering agent in IIH does not adversely 
impact cognition. A number of drugs prescribed to lower ICP 
(particularly acetazolamide and topiramate in IIH) compromise 
cognitive function. This is problematic as patients with raised ICP 
and IIH have existent clinically relevant cognitive deficits and 
drug therapy which exacerbates cognitive function further 
compromises cognition. Our findings have potential to be 
relevant when considering prescribing choices to lower ICP, 
since exenatide seemingly avoids further impairment of 
cognition.

SUMMARY

What was known before:

● Cognitive deficits, especially in executive function and 
attention, have been linked to raised ICP. Various drugs, 
often used off-label, aim to lower ICP, but some of them 
negatively affect cognitive abilities. Exenatide, has emerged 
as a potential solution, however, its impact on cognitive 
function in individuals with raised ICP remains unexplored.

What this study adds:

● We also confirm cognitive deficits in IIH patients with raised 
ICP notably in executive function. The study introduces 
exenatide as a potential solution for ICP reduction in IIH 
without negatively impacting cognition. This is significant 
because the available therapies for lowering ICP often 
exacerbate existing cognitive deficits.

Fig. 2 Change in cognitive T-scores in exenatide treated patients normalised to placebo scores. Results expressed as mean change (SD) 
SD; standard deviation.
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DATA AVAILABILITY
Anonymized individual participant data may be made available along with the trial 
protocol. Proposals should be made to the corresponding author and will be 
reviewed by the Birmingham Clinical Trials Unit Data Sharing Committee in 
discussion with the Chief Investigator. A formal Data Sharing Agreement may be 
required between respective organisations once release of the data are approved 
and before data can be released.
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