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BACKGROUND: Pathological myopia (PM) is a major cause of worldwide blindness and represents a serious threat to eye health
globally. Artificial intelligence (Al)-based methods are gaining traction in ophthalmology as highly sensitive and specific tools for
screening and diagnosis of many eye diseases. However, there is currently a lack of high-quality evidence for their use in the
diagnosis of PM.

METHODS: A systematic review and meta-analysis of studies evaluating the diagnostic performance of Al-based tools in PM was
conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. Five
electronic databases were searched, results were assessed against the inclusion criteria and a quality assessment was conducted
for included studies. Model sensitivity and specificity were pooled using the DerSimonian and Laird (random-effects) model.
Subgroup analysis and meta-regression were performed.

RESULTS: Of 1021 citations identified, 17 studies were included in the systematic review and 11 studies, evaluating 165,787 eyes,
were included in the meta-analysis. The area under the summary receiver operator curve (SROC) was 0.9905. The pooled sensitivity
was 95.9% [95.5%-96.2%], and the overall pooled specificity was 96.5% [96.3%-96.6%]. The pooled diagnostic odds ratio (DOR) for
detection of PM was 841.26 [418.37-1691.61].

CONCLUSIONS: This systematic review and meta-analysis provides robust early evidence that Al-based, particularly deep-learning
based, diagnostic tools are a highly specific and sensitive modality for the detection of PM. There is potential for such tools to be

incorporated into ophthalmic public health screening programmes, particularly in resource-poor areas with a substantial

prevalence of high myopia.

Eye (2024) 38:303-314; https://doi.org/10.1038/541433-023-02680-z

INTRODUCTION

Myopia is one of the most common ocular conditions worldwide,
with global prevalence predicted to increase from nearly 2.8
billion in the year 2020 to almost 5 billion—~49.8% of the world’s
population—by the year 2050 [1]. High myopia, generally defined
as a refractive error of —6 dioptres (D) or greater, can predispose
individuals to sight-threatening sequelae such as glaucoma,
cataract, retinal tears or detachment.

Pathological myopia (PM)—which occurs as a result of
structural changes in the posterior segment of the eye due to
significant axial elongation [2], is one of the major causes of
irreversible visual impairment worldwide [2-5], affecting ~3% of
the world population and as many as 50-70% of high myopics
to some degree [6]. Reduced visual acuity due to PM can result
in a considerable negative impact on quality of life, including
social and emotional health and functional ability [7]. The
potential economic impact of PM is also profound; a 2015 meta-
analysis estimated the global productivity loss caused by
myopic macular degeneration to be around US $6 billion
worldwide [8].

The prevalence of myopia—the main risk factor for PM
development—is extreme in many areas; in one study of 23,616
males in South Korea, 96.5% were myopic [9]. Evidence suggests
that treatment failure in the correction of myopia is common and
that long-term efficacy (of importance in reducing the risk of PM)
is often limited [10]. As a result, a significant number of
individuals, particularly in highly myopic populations, are still
likely to develop PM, underscoring the need for cost-effective,
reliable and scalable screening programmes to identify and
monitor patients with PM and follow-up those at high risk of
developing sight-threatening complications.

The diagnosis of PM is made qualitatively on fundal examina-
tion. Qualitative diagnosis can be subject to inter-observer
variability between practitioners, and requires considerable
clinical expertise to perform accurately. While optical coherence
tomography (OCT) may also be used in the diagnosis of PM,
retinal fundus photography remains the most widely accessible
form of ophthalmic imaging for screening purposes. Hence, at
present, retinal fundus images are likely to be the most useful
modality to test the efficacy of new diagnostic aids and tools.
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Several ‘classical’ features of PM may be visualised on fundus
imaging, including a ‘tesselated’ atrophy of the retinal pigment
epithelium, peripapillary atrophy, temporal flattening of the optic
disc, lacquer cracks, posterior staphyloma and Fuch’s spot. A
common cause of blindness in PM is myopic choroidal
neovascularisation (CNV), which carries an extremely poor
prognosis if untreated [2, 11].

Artificial intelligence (Al)-based diagnostic tools seek to reduce
the need for expert interpretation by learning the features of
normal and abnormal examples, with the aim of being able to
label images autonomously. Al-aided diagnosis is no longer a
novel concept in ophthalmology, and has been the subject of
much evaluation for the screening of multiple ocular diseases,
such as age-related macular degeneration, glaucoma, diabetic
retinopathy, papilloedema and retinopathy of prematurity
[12-16]. However, no systematic review or meta-analysis to date
has sought to collate and evaluate the efficacy of these methods
for the diagnosis of PM.

Therefore, the aim of the present systematic review and meta-
analysis is to assess the diagnostic accuracy of artificial
intelligence-based methods for the detection of PM using colour
fundus images.

METHODS

Study registration

This study was registered on PROSPERO with registration number
CRD42022309830.

Search strategy and inclusion/exclusion criteria

According to the Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA), and using a search strategy designed by JP
(Supplementary Table 1), the MEDLINE, EMBASE, CINAHL, Web of Science
and |EEEExplore databases were searched. Reference lists of included
studies were subsequently hand searched to identify additional studies
that met the predefined inclusion criteria.

Studies were included if they reported the effectiveness of machine
learning- or artificial intelligence-based detection algorithms in detecting
PM; used indices such as area under the receiver-operator curve (AUROCQ),
sensitivity and specificity to report on algorithm performance; evaluated
colour fundus images; provided information about the size of the dataset
and the reference standard; included a validation set at least 10% of the
size of the training set; were in English and were published in a peer-
reviewed journal. Reviews and conference abstracts were not included.

Study selection

Both reviewers independently screened all citations (and subsequently
the full texts of included citations) for inclusion in a blinded process.
Disagreements were resolved via mutual discussion, and details of these
disagreements, along with final decisions on inclusion, are included in
Supplementary Table 7.

Data extraction and quality assessment

A single reviewer (NT) extracted data from the included studies (Table 1, 2).
Extracted data were directly checked against study data by a second
reviewer (JP). Attempts were made to contact study authors for any
missing information. Risk of bias assessment was performed using a novel,
multi-step approach combining the Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2 [17]) checklist and the Checklist for
Artificial Intelligence in Medical Imaging (CLAIM [18]). Each reviewer
performed quality assessment independently using both checklists. Areas
of conflict were highlighted and are included in Supplementary Table 7.

Data analysis

2 X2 contingency tables and statistics were generated using the best
available data from study manuscripts (Table 1). Using the 2x2
contingency tables extracted for each study, sensitivity, specificity,
positive predictive value, negative predictive value, negative likelihood
ratio and positive likelihood ratio were calculated. Ungradable images
were excluded from all analyses.
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Where studies reported testing on both a primary, held-out test set and
one or more external validation sets, the 2 X 2 contingency tables for each
were combined to obtain a single contingency table. The combined
contingency table was used in the meta-analysis. The contingency tables
and model performance for the individual sets were recorded.

The presence of heterogeneity between included studies was assessed
using the chi-square test and quantified by Higgins’ /* [19], where significant
heterogeneity was considered to be F*=50%. The presence of threshold
effects was assessed using the Spearman correlation coefficient between the
logit of the true positive rate (TPR) and the false positive rate (FPR).

Where the heterogeneity among the included studies exceeded the
stated threshold of 50%, measures were pooled using the DerSimonian
and Laird (random-effects) model [20]. Where heterogeneity among the
studies did not include the threshold, we planned to use a
Mantel-Haenszel (fixed-effects) model [21].

Heterogeneity was investigated using subgroup analyses and meta-
regression. Subgroup analyses were pre-specified in the study protocol,
and included the type of model used and country of study/dataset origin.
Sensitivity analyses were performed to assess the relationship between
reviewer-assessed study quality and diagnostic accuracy and hetero-
geneity, in line with methods described by Higgins et al. [19]. Meta-
regression was performed to analyse the relative effect of the size of the
training set in each study.

The SROC curve was used to visually describe the relationship between
the TPR and FPR in the included studies. The area under the SROC curve
(AUROC) was calculated to demonstrate the probability of a classifier
correctly classifying a randomly selected negative and positive example.
Fagan nomograms were generated to describe the pre-test (prior) and
post-test (posterior) probability for included studies, enabling direct
translation of our results to the clinical setting.

Statistical analyses were performed using the Meta-Disc v1.4 software [22]
and Review Manager 5.4 (The Cochrane Collaboration, 2020). Publication bias
was assessed using the test described by Deeks et al. [23], implemented in R
v4.1.3 using the meta package [24]. Fagan nomograms were generated in R
v4.1.3 using the TeachingDemos package.

RESULTS

Study selection

Databases were initially searched for studies from inception to 20/
01/22; searches were re-run on 05/05/22 to identify newly
published studies. 1021 citations were identified via the database
search. After duplicate removal, 394 citations underwent abstract
screening for eligibility. Thirty full text articles were screened, and
met the inclusion criteria (Fig. 1). Five studies resulted in reviewer
disagreements at the abstract screening stage, and are reported
in Supplementary Table 7. There were no disagreements between
reviewers at the full-text screening stage. Eleven studies were
included in the meta-analysis [25-35], and a further six [35-40] in
the systematic review.

Study quality assessment and publication bias

The results of the quality assessment are reported in Fig. 2, and
Supplementary Tables 2 and 3. The quality of included studies
was fair, with all studies achieving either moderate or high
quality. There were no disagreements between reviewers on the
quality of included studies. No articles were excluded on the basis
of poor quality.

Using the quantitative funnel plot test described by Deeks et al.
[23], it was determined that publication bias was unlikely for
studies included in the meta-analysis (t = —1.53, p = 0.1607). The
qualitative funnel plot is shown in Supplementary Fig. 1.

Study characteristics

All 17 included studies described and evaluated an Al-based method
to identify pathological myopia from colour fundus images. Four-
teen studies (82.4%) used convolutional neural network-based
methods, with one of these studies also using a support vector
machine (SVM) method and another using a k-nearest neighbours
method for classification. Two studies (11.8%) [32, 38] used SVM for
classification, and another [40] used joint sparse multi-task learning.

Eye (2024) 38:303-314
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963 + 58
records identified via database search

J. Prashar and N. Tay

615+ 22

(MEDLINE, Embase, CINAHL, Web of
Science, IEEE Explore)

348 + 46

h 4

duplicate records removed

325+ 39

records underwent abstract screening for
eligibility

25+5
full text articles underwent screening for

h 4

records excluded after abstract screening

12+4

eligibility

14+ 3

A 4

articles excluded after full-text screening

0

arficles underwent quality assessment

14+3

articles excluded due to poor quality

4+32
articles excluded from meta-analysis

articles included in systematic review

1
articles included in meta-analysis

Fig. 1

Six studies (35.3%) used publicly available datasets, and two studies
(11.8%) used some publicly available data. Demographic informa-
tion, where reported, is presented in Supplementary Table 8. Eight
studies (47.1%) used the META-PM definition for pathological
myopia to guide annotation; the remainder did not use a formal
definition. Eight studies (47.1%) included an external validation set.
Seven studies (41.2%) compared the performance of the algorithm
with that of one or more human graders, reported in Supplementary
Table 10.

Fourteen studies (82.4%) used direct labelling by expert
ophthalmologists or retinal specialists only as the reference standard.
One study (5.9%) also used labelling by expert ophthalmologists and

Eye (2024) 38:303-314

because 2x2 contingency table could not
be formed from data provided

PRISMA flowchart showing study design. Added numbers (denoted with '+') represent studies added in the second database search.

non-medical expert graders. One study (5.9%) used self-labelling
methods for the training data and health record data for the test set.
Two studies (11.8%) used health record data to generate labels.

Performance of Al in detection of pathological myopia

Eleven studies were included in the meta-analysis. The area under
the SROC curve was 0.9905. The range of sensitivities reported
was 0.850-1.000. The range of specificities reported was
0.900-1.000. All except three studies (27.3%) had a sensitivity
and specificity above 0.900 [25, 30, 32]. The pooled sensitivity was
0.959 (95% Cl 0.955-0.962, I> 97.1%). The pooled specificity
was 0.965 (95% Cl 0.963-0.966, I* 99.4%) (Fig. 3). Diagnostic odds
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Fig. 2 Results of QUADAS-2 quality assessment. Green = high quality; yellow = unclear; red = low quality.

ratios for included studies ranged from 51.00-22702.90 (Supple-
mentary Table 6). The pooled diagnostic odds ratio (DOR) for
detection of PM was 841.26 [95% Cl 418.37-1691.61]. Fagan
nomograms are used (Supplementary Fig. 4) to demonstrate the
post-test probabilities of the included models, which ranged from
54.73% to 99.15%.

Individual contingency tables for included studies are reported
in Supplementary Table 5.

Performance comparison with human graders

7 of 11 studies included in the meta-analysis (63.6%) also reported
a comparison with human graders, and are reported in
Supplementary Table 10. Where reported, the mean sensitivities
and specificities of the human graders ranged from 0.719-0.986
and 0.972-0.998, respectively. The corresponding proposed
model sensitivities and specificities ranged from 0.908-0.991
and 0.925-1.000, respectively.

Heterogeneity analysis

Heterogeneity across the included studies was substantial (Fig. 3).
We sought to explain this heterogeneity using threshold analysis,
meta-regression and subgroup analysis.

SPRINGER NATURE

Threshold analysis

A threshold analysis showed no significant effect (Spearman
correlation coefficient=—0.112, p=0.729), indicating that the
heterogeneity observed between the included studies was
unlikely to be due to a threshold effect.

Subgroup and sensitivity analyses

We performed subgroup analyses as pre-specified in the study
protocol. Subgroup analysis by publication year was deemed
inappropriate due to the recent publication date of all except
one study.

A subgroup analysis by classification algorithm was performed.
Two studies [25, 31] used an SVM-based model for classification and
were considered as a separate subgroup to studies using CNNs.
Fifteen studies used a CNN-based approach. Although the two non-
CNN studies had a significantly lower pooled sensitivity (0.878 [95%
Cl 0.832-0915], =0.0%) than the CNN studies (0.960 [95% Cl
0.957-0.964], > = 97.4%), the pooled specificity was higher (0.999
[95% Cl 0.998-1.000], /> = 94.3%) than that of the CNN studies (0.961
[95% Cl 0.959-0.962], I* = 99.3%). The AUROC for the CNN studies
was 0.9925; as there were only two non-CNN studies, AUROC was
not estimable for this subgroup. Subgroup analysis by study country

Eye (2024) 38:303-314
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Fig. 3 Forest plot and SROC curves for main analysis. Forest plot of sensitivities (a) and specificities (b) and SROC curve for overall diagnostic
performance (c) for all studies included in meta-analysis. Cl indicates confidence interval; SROC, Summary receiver operating characteristic, AUC
indicates area under the curve, SE indicates standard error; Q* indicates where sensitivity = specificity (intersection of diagonal with SROC curve).

(studies originating from China vs. other regions) and showed lower
sensitivities, specificities and AUROC for studies originating outside
China (Supplementary Figs. 2 and 3). Heterogeneity generally
remained high (*>90%) in subgroups, limiting interpretation.

Sensitivity analyses based on reviewer-assessed study quality
using QUADAS-2 (Fig. 2) showed a significantly lower AUROC
(0.859), sensitivity (0.888 [95% Cl 0.867-0.907], I* = 16.8%) and
specificity (0.959 [95% Cl 0.944-0.971], * = 56.1%) for studies with
a ‘moderate’ risk of bias than sensitivity and specificity for studies
with a ‘low’ risk of bias (0.993, 0.966 [95% Cl 0.962-0.969],
I?=97.1%, 0.965 [95% Cl 0.966-0.963], I* = 99.6%).

Similarly, sensitivity was higher in studies with an external
validation group (0.960 [95% ClI 0.956-0.964], I> = 98.1%) versus
without (0.908 [95% Cl 0.875-0.935], I>=72.5%) (Table 2).
However, specificity was higher in studies without an external
validation group (0.999 [95% Cl 0.998-1.000], I = 85.6%, vs 0.961
[95% Cl 0.959-0.962], I* = 99.5%)

Meta-regression

Univariate meta-regression (Table 2) showed no statistically
significant effect of training set size to account for the observed
heterogeneity.

Eye (2024) 38:303-314

DISCUSSION

To our knowledge, this is the first systematic review and meta-
analysis to show that Al-based screening methods are highly
sensitive and specific for the diagnosis of pathological myopia
from fundus images. The area under the SROC curve was 0.9905,
suggesting excellent classification performance of included
models, as well as high diagnostic odds ratios (pooled DOR =
841.26) suggesting that included models generally possessed
robust discriminative ability. However, the presence of unex-
plained statistical heterogeneity means that results should be
interpreted with caution.

The majority of included studies used CNN-based models to
detect PM. Three of the studies reported lower sensitivities
[25, 30, 31], two of which used SVM to classify images, which
would be expected to have lower discriminative ability than a
deep learning-based approach. While one study employing SYM
[37] was excluded from the quantitative analysis, it also showed a
lower discriminative ability relative to CNN-based models.

Fagan nomograms were used to describe the likelihood of a
patient having PM if the diagnostic tool deemed them to be a
positive case (post-test probability); these demonstrated generally
high (>85%) post-test probabilities, suggesting that diagnostic
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decisions made by Al-based tools may offer clinicians a high
degree of clinical certainty.

The potential application of Al models to diagnose PM in
practice is multi-fold. Firstly, these analyses show a universally
high observed diagnostic accuracy of Al-based models, reinfor-
cing their capability as powerful screening tools for PM.

Secondly, our analyses reveal that the diagnostic accuracy and
discriminative capability of these models is comparable to that
provided by ophthalmologists, highlighting their capability as
decision aids. In all seven studies comparing algorithm and grader
performance, algorithm sensitivity and specificity was comparable
with that of human graders, offering support for the use of such
algorithms as screening or triage tools. The use of Al in an
assistive capacity may reduce uncertainty in diagnosis and reduce
the variability in the diagnosis made between healthcare
professionals [41].

Tools based on Al models can work with clinicians to guide
triage and referral decisions in general practice or non-specialist
centres with a high case burden, as described by De Fauw et al.
[42]. This may have particular benefit for clinicians in training, or
in regions with reduced incidence of PM, who may derive benefit
from decision support in selecting cases of PM [43], or in areas
with poor access to healthcare services [44].

Identification and close follow-up of patients with uncompli-
cated PM is crucial in enabling early management of treatable
complications such as myopic CNV—for example with anti-VEGF
therapy [45]—optimisation of visual acuity and stabilisation of
progressive myopia. As novel treatments, such as stem cell
therapy, gain prominence in the management of retinal disease
[46], timely and targeted intervention is likely to be effective in
reducing the public health burden of PM. Identification of PM can
enable prognostication and careful multidisciplinary planning to
mitigate the social, economic [47] and cognitive [48] impacts of
progressive visual loss on the individual.

No included studies reported on the implementation of Al-
based screening methods in clinical practice. While this review
highlights the potential of Al to make highly specific and sensitive
judgements on the presence or absence of pathological myopia,
consideration must be given to generalisability across popula-
tions, explainability of screening decisions [49], and patient and
healthcare professional acceptability [50].

Several existing reviews and meta-analyses examine the sensi-
tivity and specificity of Al-based methods for the detection of other
ophthalmic conditions from fundus photographs. Dong et al. [12]
performed a systematic review and meta-analysis of Al algorithms
used for the diagnosis of age-related macular degeneration, finding
a pooled sensitivity and specificity of 0.88 and 0.90 respectively.
Chaurasia et al. [13] demonstrated a pooled sensitivity and
specificity of 0.92 and 0.94 respectively for the diagnosis of
glaucoma from fundus images using Al algorithms. Finally, a meta-
analysis by Wu et al. [51] observed a combined AUROC of 0.97-0.99
for the use of Al in diabetic retinopathy screening.

Examples are present in the literature of the use of Al for the
detection of PM from optical coherence tomography (OCT)
images [32, 52]. However, this was beyond the scope of this
study. At the time of writing, OCT machines remain expensive,
rendering them inaccessible in many regions. Fundus imaging,
however, is widespread, and screening tools based on fundus
photography may have a more significant clinical impact in less
economically developed regions.

Future research assessing the diagnostic performance of Al
models using OCT images for detection of PM may be useful in
regions where the technology is widely used.

Strengths and weaknesses

The present study has several strengths. We used robust meta-
analytic methodology to assess the pooled diagnostic accuracy of

SPRINGER NATURE

included studies, according to the PRISMA guidelines. Rigorous
risk of bias assessment was performed, using two checklists, to
identify studies which did not meet quality standards for
inclusion, and heterogeneity and publication bias were compre-
hensively assessed using established methods.

Several limitations to this analysis are noted. First, there was
significant statistical heterogeneity between the included studies,
which was not entirely explained by analysis of threshold effects,
study origin, training set size, study quality, the presence of
external validation or the algorithm used.

A sensitivity analysis showed that studies deemed to have a
moderate risk of bias reported a lower sensitivity and specificity,
and studies without an external validation set reported a lower
sensitivity—explaining some of the observed heterogeneity.
Notably, there was considerable variation in the case-mix of
positive to negative cases between studies, with PM prevalence
varying from 3.78% in the test set used by Demir et al. to over
50% in other studies, potentially contributing to spectrum bias
(where the discriminative ability of a diagnostic test varies
according to the population in which it is used).

Meta-analyses of diagnostic accuracy of Al-based tools for the
diagnosis of other ophthalmic conditions also demonstrate high
unexplained heterogeneity [53], suggesting that variation in
study and model design may have contributed to heterogeneity.
However, it was not possible to assess the effects of variation in
study design in detail (beyond subgroup analysis based on model
type) due to the limited amount of methodological data provided
in some studies. Regardless, the included studies spanned a
diverse range of techniques and approaches, which—in the
context of universally high diagnostic accuracy—suggests that Al-
based techniques may possess excellent external validity for this
purpose.

Secondly, several studies did not include an external validation
set, limiting the generalisation ability of the algorithms reported.
Ophthalmic patient populations are diverse, underlining the need
for external validation, and meaning that the results of these
studies should be interpreted with caution.

Third, there is a small degree of overlap between images
contained within public datasets used in the studies, which
could result in inflated estimates of diagnostic accuracy when
comparing studies. Fourth, a retrospective study design was
employed by all included studies. Retrospective design can
lead to a selection bias, and have been shown to lead to
overestimation of diagnostic accuracy [54]. Fifth, there was a
preponderance of studies from East Asian countries, particu-
larly China, in this review and meta-analysis. Planned
subgroup analysis assessing studies by country of origin
showed a small increase in sensitivity and specificity for
studies originating from China, however it is unknown
whether this is due to model factors or ethnic differences in
fundus appearance [55].

Finally, due to the limitations of the available data, we did not
include an analysis of model performance by severity of
pathological myopia. It is therefore unknown how disease severity
affects diagnostic accuracy in this case. Evidence suggests that
use of severe cases may result in somewhat inflated estimates of
diagnostic accuracy, and this would be an appropriate area for
future research [54].

CONCLUSION

This systematic review and meta-analysis provide robust early
evidence for the diagnostic accuracy of Al-based tools in the
diagnosis of PM. Such tools are likely to have significant impact in
screening, triage, assisted diagnosis and monitoring of myopic
patients, and may enable earlier diagnosis and improve clinical
outcomes for patients at risk of developing PM.

Eye (2024) 38:303-314



SUMMARY

What was known before

Pathological myopia (PM) is an increasingly prevalent sight-
threatening complication of high myopia, which requires
close follow-up once identified to mitigate visual loss.

The identification of PM from fundus images generally relies
upon qualitative diagnosis by a healthcare professional.
Artificial intelligence-based diagnostic tools have shown
promise in ophthalmic diagnosis, but have not been
specifically validated for use in PM.

What this study adds

Artificial intelligence-based algorithms are highly sensitive
and specific for the diagnosis of PM from colour fundus
images.

These tools may hold potential for use in resource-
constrained healthcare settings with a high prevalence of PM.

DATA AVAILABILITY
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