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BACKGROUND: Fundus microvasculature may be visually observed by ophthalmoscope and has been widely used in clinical
practice. Due to the limitations of available equipment and technology, most studies only utilized the two-dimensional planar

features of the fundus microvasculature.

METHODS: This study proposed a novel method for establishing the three-dimensional fundus vascular structure model and
generating hemodynamic characteristics based on a single image. Firstly, the fundus vascular are segmented through our proposed
network framework. Then, the length and width of vascular segments and the relationship among the adjacent segments are
collected to construct the three-dimensional vascular structure model. Finally, the hemodynamic model is generated based on the
vascular structure model, and highly correlated hemodynamic features are selected to diagnose the ophthalmic diseases.
RESULTS: In fundus vascular segmentation, the proposed network framework obtained 98.63% and 97.52% on Area Under Curve
(AUC) and accuracy respectively. In diagnosis, the high correlation features extracted based on the proposed method achieved 95%

on accuracy.

CONCLUSIONS: This study demonstrated that hemodynamic features filtered by relevance were essential for diagnosing retinal
diseases. Additionally, the method proposed also outperformed the existing models on the levels of retina vessel segmentation. In
conclusion, the proposed method may represent a novel way to diagnose retinal related diseases, which can analysis two-
dimensional fundus pictures by extracting heterogeneous three-dimensional features.
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INTRODUCTION

Various ophthalmic and systemic diseases can cause varying
degrees of deformation on fundus microvasculature. Observing
the morphological changes of optic disc vessels is one of the
informative diagnostic factors of glaucoma [1, 2]. The progress of
diabetic angiopathy can be assessed by the degree of deforma-
tion of the fundus vessels [3-5]. This sign may also occur in
patients with certain types of hypertensions [6-9]. Additionally,
people with deformed fundus vessels have a higher risk of stroke
than normal people [10].

Most studies investigated the fundus microvasculature-based
disease prediction problems by only the two-dimensional planar
features, both on supervised and unsupervised methods [11-13].
The proposed method defined the ratio of the blood vessels area
in the inferior-superior side to the area of blood vessels in the
nasal-temporal side as a feature and optimized a glaucoma
prediction model with 100% in sensitivity and 80% in specificity
[14]. A prediction model of hypertensive retinopathy was
proposed using the features of artery vein ratios(AVR), diameter
and tortuosity of blood vascular and achieved 92% in accuracy

[15]. Lacunar stroke also demonstrated significant changes in the
fundus microvasculature and may be detected using the features
of retinal fractal dimension, which is a quantitative measure of
microvascular branching complexity and density [16].

To the best of our understanding, there is no research on the
three-dimensional structure of vascular based on single fundus
image at present. Thus, this study proposed a novel method,
which can build fundus microvasculature model by mining and
integrating vascular related spatial information contained in a
single image. Firstly, the fundus microvascular segmentation map
is obtained by our proposed DenseBlock-Unet framework. Then,
the skeleton image with central points and the vessel boundaries
image can be obtained from the previous segmentation map
through the Zhang Suen thinning algorithm and canny edge
detection algorithm respectively. After that, relevant spatial
information will be extracted and integrated into the software
the SimVascular (SV) [17] to generate a three-dimensional model
and complete the hemodynamic model simulation. Finally, the
feature information generated by the model is used to diagnose
whether the target image has ophthalmic diseases.
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MATERIALS AND METHODS

Dataset

The publicly available datasets STARE [18, 19] was used to test our
proposed algorithm. This dataset contained 20 images with a size of
605%705 pixels. Two manually labelled vessel ground-truth were provided
and the first one was usually used as the gold standard. Because the author
didn’t separate the training and testing dataset from these images, we
evaluated the performance by performing leave-one-out cross-validation
at the stage of retina vessel segmentation as other works had been done.
In addition, the author labelled all these images, thus the proposed
classification model can be tested base on the gold standard.

Retina vessel segmentation

Inspired by Unet [20], A novel method named The DenseBlock-Unet was
proposed for Image Segmentation in Bio-medical. The architecture of The
DenseBlock-Unet contains two paths. The first one is the contraction path
which is used to capture the context in the image. The second one is the
symmetric expanding path which is used to enable precise localization
using transposed convolutions. The DenseBlock [21] in the DenseBlock-
Unet contains two convolution layers for reducing artifacts from images
and enabling the neural network to be more deeper. Therefore, its
performance in segmentation task can be better than primary Unet. The
architecture of the DenseBlock-Unet is shown in Fig. 1a.

DenseBlock is really helped to remove artifacts from images. The
neural networks using DenseBlock layers can be deeper than classical
networks composed by convolution layers, which means useful
information can be extracted immensely. What's more, its skip
connection not only connects the upper and lower layers, but also
contains cross layer connection directly. The gradient obtained by every
layer is the gradient addition from the previous layers. Which is showed
at great length in Fig. 1b.

As Fig.1b shows that DenseBlock contains two convolution layers and its
input is last DenseBlock after max pooling by 2x2. A composite function of
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two consecutive operations: batch normalization, followed by a rectified
linear unit is used for convolution layers’ connection.

Most of the existing models only using the G channel for the
segmentation task [22-24]. However, considering the R channel may
contain some important features, the proposed method firstly uses three
different proportions of channels which are 0.5G+ 0.5R, 0.75G + 0.25R,
and 1G + OR for segmentation tasks. Then the proposed method performs
the Local Search Algorithm around the best proportion gotten from the
above experiments to find the best local maximum value. The proportion
in the Local Searching Algorithm is expressed as (g + i*step)G + (r-i*step)R
where the step is 0.01 and the g and r are the best proportion getting from
the above experiments.

Vascular structure surface model

Considering the optic disc was one of the widest research areas in
ophthalmic related diseases, our method only studied on it and these
areas were labelled by a professional doctor firstly. In this stage, the
methods used to build vascular structure surface models were the same
as which was implemented in SimVascular, a software used to construct
hemodynamic model in the following steps. Firstly, this method required
to extract the centreline and downsample the points on it. Then the
radius of cross-section corresponding to the point will be calculated and
circles with these points as the centre will be drawn. Finally, these
contours will be connected smoothly to form the vascular structure
surface model.

This study utilized the Zhang-Suen thinning algorithm to skeletonize the
segmented fundus vascular images. Each iteration step of this algorithm
was to corrode the target pixels satisfying certain conditions. This
algorithm was iteratively executed until no new pixels were corroded.
The output of this skeletonization step was illustrated in Supplementary
Fig. 1a. Then all the points on the skeleton line will be traversed for finding
the coordinates of the endpoints and intersections of the skeleton line, as
shown in Supplementary Fig. 1b, by calculating the number of points near
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Fig. 2 The modelling process and results. a Vascular skeleton line. b Endpoints and intersections on the skeleton line. ¢ Vascular boundary.
d The model highlights a part. e Model protruding silhouette. f After adjusting the highlighted outline. g Pressure distribution just after blood
flow into blood vessels. h Pressure distribution where most of the blood flow has entered the blood vessel. i Vascular pressure distribution at
the end of blood flow. j Too many contours on the skeleton line cause crossover. k Sample optic disc area vascular model.

Table 1. performance of three kind of proportion.

G R AUC(%) ACC(%) SE(%) SP(%)
0.5 0.5 98.09 97.04 80.11 98.43
0.75 0.25 98.42 97.41 81.69 98.7

1 0 98.63 97.52 81.8 98.82

the point with the size of 3 x 3 area. When the points on the skeleton line
were too dense, it will lead to the intersection between the corresponding
contours of every two points (which was shown in Fig. 2j), and the blood
vessel modelling process cannot be completed at this time. Therefore,
downsample was used to prevent intersections between the correspond-
ing contours of every two feature points by removing points in a fixed
number of intervals.

The canny operator was utilized to detect the edges in the fundus
images, as shown in Supplementary Fig. 1c. The canny operator may not
only improve the sensitivity of detecting the vessel edges, but also
suppress the image noises. For each point selected on the centreline, we
use the normal vector direction of the vessel segment where the point is
located to determine the shortest distance (Euclidean distance) from the
edge of the vessel on the edge map (Fig. 2c). We consider this distance to
be the radius of the blood vessel profile at which the point is located.
Through the above operations, the centreline and radii of the retinal
vascular network are obtained.

When generating complex 3D models, more problems are prone to
occur. As shown in Fig. 2e, the gaps at the intersection of the blood
vessels occur because the difference in radius between the two blood
vessels at the intersection is too large. The appearance of gaps between
blood vessels does not meet the actual situation, and the model needs
to be modified to meet the hemodynamic simulation. The gaps at the
intersection of blood vessels can be resolved by adjusting the radius of
the protruding contour. SV provides multiple methods for model
modification, and users can adjust the model according to their needs.
Here we first adjusted the radius of the protruding contour, then
eliminated the gaps at the intersection of the blood vessels based on the
local Laplacian smoothing method [25], making the model surface
smoother. The sample final model was shown in Fig. 2k.
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Hemodynamic modelling

We follow the requirements [26-28] of the software to set different parameters
to describe boundary condition of inlets and outlets and obtain three kinds of
features which were flowrate for each face with time steps, pressure for each
face with time steps, the average, maximum, minimum values of pressure,
flowrate for each face. To sum up, there are 140 features for each sample.

RESULTS AND DISCUSSION

Evaluation of retina vessel segmentation

In the same way as most of the existing methods, the proposed
method regards the retinal microvascular segmentation result as a
binary classification problem which is composed of vessel
pixels(positive) and other pixels(negative). After comparing with
the manual ground truth, four measures can be calculated, i.e., true
positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP). Four performance metrics are used to illustrate the
good ability of the model for vascular segmentation, i.e., accuracy
(ACQ), sensitivity (SE), specificity (SP) and Area Under the ROC curve
(AUCQ). The performance metrics of the proposed method on STARE
dataset with three kinds of proportion are shown in Table 1.

The proportion of 1G + OR obtains the best performance. After
performing the Local Search Algorithm, the performance of
proportion around 1G+OR is declining, which means the
1G+O0R is the local best proportion. The AUC result at the
proportion of 0.99G + 0.01R is 98.18%. The result of extracted
blood vessel images was shown in Supplementary Fig. 2.

As shown in Table 2, the proposed method obtained best
accuracy among all the methods [23, 29-35] we know, which was
97.52% and at least 0.57% higher than others. Additionally, other
indicators were also relatively excellent, especially specificity was
also the highest.

Evaluation of vascular structure surface model

Here we used grid quality analysis to evaluate our vascular
structure surface model. At the same time, we also compared it
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Table 2. Evaluation of retina vessel segmentation.

Methods AUC (%) ACC (%) SE (%) SP (%)
Lam et al. [29] 97.39 95.67 NA NA
Fraz et al. [30] NA 94.42 73.11 96.8
Fraz et al. [31] 97.68 95.34 75.48 97.63
Li et al. [32] 98.79 96.28 77.26 98.44
Azzopardi et al. [33] 94.97 95.63 77.16 97.01
Mapayi et al. [34] NA 95.10 76.26 96.57
Liskowski et al. [23] 99.30 96.67 92.89 97.10
Tang et al. [35] 98.98 96.95 81.62 98.69
Our method with 98.63 97.52 81.8 98.82

best local optimal

proportion
Table 3. Comparison results of three modelling methods.
Methods Element quality Aspect ratio il Sk

corner angle
sV 0.8278 (+0.0016)  1.880 (+0.0057) 96.85° (+0.0024)  0.2432 (+0.0027)
ccs 0.8274 (£0.0027)  1.879 (+0.0100) 96.75° (0.0045) 02441 (£0.0045)
ALS 0.8262(+0.0048)  1.884 (+0.0168) 96.82° (+0.0034)  0.2460 (+0.0075)

with two famous methods based on blood vessel centreline,
which were atmull-Clark Surface Method (CCS) and Adaptive Loop
Surface Method (ALS).

The assembly meshing method of the software ANSYS was
used to divide the blood vessel model into triangular meshes
and to analyse the quality of these meshes. Additionally, four
indicators, which were element quality, aspect ratio, maximum
internal angle, and skewness, were applied to perform the mesh
quality analysis. Element quality is the ratio of the volume to the
side length of a given element. Its value is between 0 and 1. The
worst is 0 and the best is 1. Aspect ratio represents the ratio of
the radius of the inscribed circle to the radius of the inscribed
circle, the best value is 1, and the bigger the worse. The
maximum internal angle evaluates the shape of triangular mesh.
The closer the value is to 60 degrees, the better. And Skew rate
is the difference between the actual node shape and the
equivalent volume node, the value between 0 and 1, the closer
the value is to 0, the better.

Table 3 lists the average of 20 models generated by the three
methods under the five indicators. It can be seen that the SV
method is better in terms of element quality and range of
skewness. The aspect ratio is only 0.01 worse than CSS, and in
terms of maximum internal angle, it is basically the same as the
CSS and ALS methods. The CSS and ALS methods can adjust the
intersection of models, resulting in less stable mesh quality in the
model. As the model is adjusted, the mesh changes in the model
are smaller and consequently the maximum internal angle is
smaller. Generally, because the SV method does not adjust the
model intersection, the quality of the generated model mesh is
more stable and closer to the actual situation features correlation
analysis in our project.

Evaluation of features

By way of better fitting performance and reducing over-fitting,
some features were selected for classification tasks. The feature
selection procedure was made up of three parts. Firstly, Anova (T-
test) algorithm extracted features which p-values less than 0.05 in
traditional statistical inference. The result showed that there were
88 features selected by the algorithm respectively, and the best
classification performance was 85% by Logistic Regression
classifier. Secondly, Anova (F-test) algorithm with retaining
features less than the threshold obtained by certain step length
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iteration. The result showed that 4 features were selected by this
method, and the best classification performance was 95% by the
SVM classifier. Thirdly, the performance of the best classification
using the best first search algorithm on the features was 85% by
SVM classifier. Additionally, there were 39 features in this
procedure and four of them performed best, which were
“Qmax_Time”, “Qmax_Time_from_cm”, “Step_10_mean”, and
“Step_12_mean”. The “Qmax_Time" feature means the time when
the mean flowrate inside the vessel reaches a maximum. When
the flow rate is L/min, the function of “Qmax_Time_from_cm” is
the same as that of “Qmax_Time". while the flowrate is L/min. The
Step_10_mean and the Step_12_mean features are the mean
flowrate at the time of the 10th step and the 12th step.
Coincidentally, two features both mean max time and another
two features both are the means of steps. The result of the
classification implied that the first three output files can be used
for retinal image classification.

Evaluation of classification

Based on the above features of great relevance, some commonly
used classifiers with better effect i.e,, Extreme Gradient Boosting
(XGBOOST), Support Vector Machine (SVM), Nearest Neighbor
(NN), Decision Tree (DTree), Naive Bayes (NBayes), Logistic
Regression (LR), and Random Forest (RF) were used. Among
them, the effect on Support Vector Machine (SVM) was the best,
reaching 95%. At the same time, two different types of
characteristics (HOG and LCP) were also applied to test these 20
original images for comparison. Here we used the same feature
selection methods and classifiers as above. In addition, all possible
parameters for the two kinds of algorithms were set with different
experiments. Finally, the mean best accuracy of HOG and LCP was
80% and 87% respectively. What's more, there was only one result
in LCP and none in HOG better than the proposed method in all
experiments.

The display of hemodynamic model

We made a video of the hemodynamic simulation results of 20
models, and selected three screenshots from the hemodynamic
simulation results of picture 235 of the STARE dataset for
demonstration purposes. In the hemodynamic simulation results,
the darker the red, the greater the pressure, and the darker the
blue, the less the pressure. Figure 2g shows the situation when the
blood flow has just entered the blood vessel. The blood flow
pressure at the entrance is the largest, and certain pressure in the
rest of the blood vessel. Figure 2h shows that most blood flow has
entered the blood vessel, and the pressure at the blood vessel
entrance is reduced. Figure 2i shows that the blood flow inflow
process has ended, so the pressure in each part of the blood
vessel becomes smaller. All hemodynamic simulation process
videos can be found in Supplementary File 1.

The advantages of hemodynamic model

It is common for patients undergoing ophthalmic surgery to
suffer from microcirculation disorders, insufficient fundus blood
supply, and hemodynamic abnormalities [36, 37]. The factors
listed above lead to an increase in blood viscosity, micro-
thrombosis, slow blood flow, capillary occlusion, as well as
hypoxia and ischemia of the fundus tissues [38, 39]. Almost all
of these signs can be intuitively expressed by hemodynamic
models. At the same time, this convenient non-invasive
technology is capable of detecting patients on a regular basis.
As soon as a patient is detected to have complications following
surgery, drugs can be administered immediately. It is antici-
pated that these drugs will promote the formation of fundus
collateral circulation, improve the microcirculation of the
fundus, and increase the supply of blood to the fundus.
Consequently, vision can be improved significantly and lesions
in the fundus can be reduced in extent [40].

Eye (2023) 37:2505-2510



Relationship between image resolution and machine learning
systems

The training of a machine learning system generally requires a
sufficient number of low-level and high-level input features. Low-
level features are typically small details in an image, such as edges,
corners, colours, pixels, etc. The high-level features are derived
from low-level features and are useful for specifying an object’s
shape with a greater amount of semantic information [41].
Accordingly, the higher the resolution of the images, the better
the performance of the machine learning system. However, it is
difficult to obtain due to equipment limitations. This study utilized
the best colour channel ratios to provide additional information to
the model. Other methods, such as transfer learning and super-
resolution image processing, can also enhance machine learning
performance.

Supplementary information is available at nature.com/eye

Summary

What was known before

® Fundus microvascular structure A. Fundus microvasculature
may be visually observed by ophthalmoscope and has been
widely used in clinical practice B. Various ophthalmic diseases
and heart cerebrovascular disease can cause varying degrees
of deformation on fundus microvasculature

® Hemodynamic model Haemodynamics is a branch of biome-
chanics. Its main task is to apply the theories and methods of
fluid mechanics to study the causes, conditions, states and
various influencing factors of blood circulation along blood
vessels, so as to clarify the law of blood flow, physiological
significance and the relationship with diseases

What this study adds

® Construction of Three-Dimensional Fundus Vascular Structure
Model Most of the previous studies were based on the plane
features of fundus images. However, our research has made a
breakthrough. By extracting and integrating the spatial
features of a single fundus image, we have carried out
three-dimensional vascular model.

® Diagnose related diseases through the hemodynamic char-
acteristics of fundus. Haemodynamics has been widely used in
the diagnosis of diseases, but due to the particularity of
ophthalmic vessels, there has been no relevant research.
Therefore, we have made a preliminary attempt.

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
in the STARE repository, https://cecas.clemson.edu/~ahoover/stare/.
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