Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of dietary-based weight loss interventions on biomarkers of endothelial function: a systematic review and meta-analysis

Abstract

Endothelial dysfunction is closely linked to the development of atherosclerosis. This systematic review and meta-analysis reviewed the evidence on the effect of weight loss, achieved by dietary-based interventions, on biomarkers of endothelial function (EF). Two databases (Medline, Embase) were searched from inception until November 2022 for studies that met the following criteria: 1) adult subjects (≥ 18 years) without exclusion for health status, 2) dietary interventions for weight loss, and 3) measurements of changes in EF biomarkers. Random-effect meta-analysis and meta-regression were performed. Thirty-seven articles including 1449 participants were included in the systematic review. Study duration ranged from 3-52 weeks. Overall, weight loss significantly improved biomarkers of EF [standardised mean difference (SMD):0.65; 95%CI:0.49,0.81; P < 0.001;I2 = 91.9%]. Subgroup analyses showed weight loss significantly improved levels of E-selectin (P < 0.001), intercellular adhesion molecule-1 (ICAM-1) (P < 0.001), vascular cell adhesion molecule-1 (VCAM-1) (P < 0.001), nitrite/nitrate (NOx) (P < 0.001) and vascular endothelial growth factor (VEGF) (P < 0.001). Conversely, there was no significant improvement for von Willebrand Factor (vWF). Meta-regression analysis revealed that changes in EF biomarkers were not affected by age, BMI, quality of the studies or the amount of weight lost. A significant heterogeneity was observed for the effects of weight loss on changes in EF biomarkers. Dietary-induced weight loss may be associated with biomarkers changes indicating an improvement of EF, and it may represent a potential strategy to reduce atherosclerotic risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram outlining the selection process of the studies included in the systematic review and meta-analysis.
Fig. 2: Forest plots displaying the effects of weight loss on overall and individual biomarkers of endothelial function.

Similar content being viewed by others

References

  1. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93:105–13. https://doi.org/10.1093/bja/aeh163.

    Article  CAS  PubMed  Google Scholar 

  2. Chia PY, Teo A, Yeo TW Overview of the Assessment of Endothelial Function in Humans. Front Med. 2020; 7. https://doi.org/10.3389/fmed.2020.542567.

  3. Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxid Med Cell Longev. 2017;2017:9759735. https://doi.org/10.1155/2017/9759735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gimbrone MA,Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Res. 2016;118:620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  Google Scholar 

  5. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovascular J Afr. 2012;23:222–31. https://doi.org/10.5830/cvja-2011-068.

    Article  Google Scholar 

  6. Sun H-J, Wu Z-Y, Nie X-W, Bian J-S Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol. 2020; 10. https://doi.org/10.3389/fphar.2019.01568.

  7. Yuyun MF, Ng LL, Ng GA. Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvasc Res. 2018;119:7–12. https://doi.org/10.1016/j.mvr.2018.03.012.

    Article  CAS  PubMed  Google Scholar 

  8. Varona JF, Ortiz-Regalón R, Sánchez-Vera I, López-Melgar B, García-Durango C, Castellano Vázquez JM, et al. Soluble ICAM 1 and VCAM 1 Blood Levels Alert on Subclinical Atherosclerosis in Non Smokers with Asymptomatic Metabolic Syndrome. Arch Med Res. 2019;50:20–28. https://doi.org/10.1016/j.arcmed.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  9. Leeuwenberg JF, Smeets EF, Neefjes JJ, Shaffer MA, Cinek T, Jeunhomme TM, et al. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology. 1992;77:543–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roldán V, Marín F, Lip GY, Blann AD. Soluble E-selectin in cardiovascular disease and its risk factors. A review of the literature. Thromb Haemost. 2003;90:1007–20. https://doi.org/10.1160/th02-09-0083.

    Article  PubMed  Google Scholar 

  11. Schram MT, Stehouwer CD. Endothelial dysfunction, cellular adhesion molecules and the metabolic syndrome. Horm Metab Res. 2005;37:49–55. https://doi.org/10.1055/s-2005-861363.

    Article  CAS  PubMed  Google Scholar 

  12. Chavin SI. Factor VIII: structure and function in blood clotting. Am J Hematol. 1984;16:297–306. https://doi.org/10.1002/ajh.2830160312.

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organisation. Obesity and overweight. In: WHO, 2021.

  14. Piché ME, Tchernof A, Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020;126:1477–1500. https://doi.org/10.1161/circresaha.120.316101.

    Article  PubMed  Google Scholar 

  15. Sanches E, Topal B, Proczko M, Stepaniak PS, Severin R, Philips SA, et al. Endothelial function in obesity and effects of bariatric and metabolic surgery. Expert Rev Cardiovasc Ther. 2020;18:343–53. https://doi.org/10.1080/14779072.2020.1767594.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki S, Higashi Y, Nakagawa K, Kimura M, Noma K, Sasaki S, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension*. Am J Hypertension. 2002;15:302–9. https://doi.org/10.1016/s0895-7061(01)02322-6.

    Article  CAS  Google Scholar 

  17. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA. 2004;101:6659–63. https://doi.org/10.1073/pnas.0308291101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson JW, Konz EC. Obesity and disease management: effects of weight loss on comorbid conditions. Obes Res. 2001;9:326s–334s. https://doi.org/10.1038/oby.2001.138.

    Article  PubMed  Google Scholar 

  19. Ryan DH, Yockey SR. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr Obes Rep.2017;6:187–94. https://doi.org/10.1007/s13679-017-0262-y.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seyyedi J, Alizadeh S. Effect of Surgically Induced Weight Loss on Biomarkers of Endothelial Dysfunction: a Systematic Review and Meta-Analysis. Obes Surg. 2020;30:3549–60. https://doi.org/10.1007/s11695-020-04710-1.

    Article  PubMed  Google Scholar 

  21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. https://doi.org/10.1136/bmj.b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clark HD, Wells GA, Huët C, McAlister FA, Salmi LR, Fergusson D, et al. Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials. 1999;20:448–52. https://doi.org/10.1016/s0197-2456(99)00026-4.

    Article  CAS  PubMed  Google Scholar 

  23. Cioffi I, Farella M. Quality of randomised controlled trials in dentistry. Int Dent J. 2011;61:37–42. https://doi.org/10.1111/j.1875-595X.2011.00007.x.

    Article  PubMed  Google Scholar 

  24. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34. https://doi.org/10.1136/bmj.315.7109.629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bosanská L, Lacinová Z, Roubícek T, Mráz M, Bártlová M, Dolezalová R, et al. The influence ofvery-low-calorie diet on soluble adhesion molecules and their gene expression in adiposetissue of obese women. Cas Lek Cesk. 2008;147:32–37.

    PubMed  Google Scholar 

  27. Darakhshan F, Pelloux V, Rouault C, Laromiguiere M, Debrus G, Massiera F et al. Effect of a high-protein-low-glycaemic-index hypocaloric diet on adiposity markers, cardiovascular and metabolic risk factors: a randomised controlled trial. Diabetes 2010;1772–P.

  28. Ewa Kwiecinska ES-G, Borkowska A, Saryusz-Wolska M, Pawlowski M, Loba J, Czupryniak L. Integrated Physiology/Obesity. Diabetes. 2012;61:A688–A719. https://doi.org/10.2337/db12-2763-2907.

    Article  Google Scholar 

  29. Kitabchi AE SFB, McDaniel K, et al. Effect of dietary macronutrients on oxidative stress, cardiovascular risk factors, and insulin sensitivity in obese, non-diabetic, premenopausal women. Diabetologia 2011; https://doi.org/10.1007/s00125-011-2276-4.

  30. Lee PSS, Naseer F, Lim SL, Khoo EY, Yeo TC, Richards AM, et al. Abstract 15421: Effect of Weight Loss Intervention Program on Cardiac Function, Endothelium Progenitor Cells and Microparticles in Mildly Obese Asians. Circulation. 2016;134:A15421–A15421. https://doi.org/10.1161/circ.134.suppl_1.15421.

    Article  Google Scholar 

  31. Rizkalla SW, Prifti E, Cotillard A, Pelloux V, Rouault C, Allouche R, et al. Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr. 2012;95:49–63. https://doi.org/10.3945/ajcn.111.017277.

    Article  CAS  PubMed  Google Scholar 

  32. Sharman MJ, Volek JS. Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci (Lond). 2004;107:365–9. https://doi.org/10.1042/cs20040111.

    Article  CAS  PubMed  Google Scholar 

  33. Joris PJ, Plat J, Kusters YH, Houben AJ, Stehouwer CD, Schalkwijk CG, et al. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: a randomized controlled trial in abdominally obese men. Am J Clin Nutr. 2017;105:23–31. https://doi.org/10.3945/ajcn.116.143552.

    Article  CAS  PubMed  Google Scholar 

  34. Mashayekhi M, Beckman JA, Nian H, Garner EM, Mayfield D, Devin JK et al. Comparative effects of weight loss and incretin-based therapies on vascular endothelial function, fibrinolysis and inflammation in individuals with obesity and prediabetes: A randomized controlled trial. Diabetes, Obesity Metabol. 2022; n/a. https://doi.org/10.1111/dom.14903.

  35. Sánchez E, Santos MD, Nuñez-Garcia M, Bueno M, Sajoux I, Yeramian A et al. Randomized Clinical Trial to Evaluate the Morphological Changes in the Adventitial Vasa Vasorum Density and Biological Markers of Endothelial Dysfunction in Subjects with Moderate Obesity Undergoing a Very Low-Calorie Ketogenic Diet. Nutrients 2021; 14. e-pub ahead of print 2022/01/12; https://doi.org/10.3390/nu14010033.

  36. Maeda S, Miyaki A, Kumagai H, Eto M, So R, Tanaka K, et al. Lifestyle modification decreases arterial stiffness and plasma asymmetric dimethylarginine level in overweight and obese men. Coron Artery Dis. 2013;24:583–8. https://doi.org/10.1097/MCA.0b013e3283647a99.

    Article  PubMed  Google Scholar 

  37. Sag SJM, Strack C, Zeller J, Mohr M, Loew T, Lahmann C, et al. Successful weight loss reduces endothelial activation in individuals with severe obesity participating in a multimodal weight loss program. Obes Res Clin Pr. 2021;15:249–55. https://doi.org/10.1016/j.orcp.2021.03.013.

    Article  Google Scholar 

  38. López-Domènech S, Martínez-Herrera M, Abad-Jiménez Z, Morillas C, Escribano-López I, Díaz-Morales N, et al. Dietary weight loss intervention improves subclinical atherosclerosis and oxidative stress markers in leukocytes of obese humans. Int J Obes. 2019;43:2200–9. https://doi.org/10.1038/s41366-018-0309-5.

    Article  CAS  Google Scholar 

  39. Korybalska K, Luczak J, Swora-Cwynar E, Kanikowska E, Czepulis N, Kanikowska D, et al. Weight Loss-Dependent And -Independent Effects Of Moderate Calorie Restriction On Endothelial Cell Markers In Obesity. J Physiol Pharmacol. 2017;68:597–608.

    CAS  PubMed  Google Scholar 

  40. Abd El-Kader SM, Al-Jiffri OH, Neamatallah ZA, AlKhateeb AM, AlFawaz SS. Weight reduction ameliorates inflammatory cytokines, adipocytokines and endothelial dysfunction biomarkers among Saudi patients with type 2 diabetes. Afr Health Sci. 2020;20:1329–36. https://doi.org/10.4314/ahs.v20i3.39.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abd El-Kader SMA-JO. Coagulation, fibrinolytic and cytokines parameters response to weight reduction in obese subjects. Eur J Gen Med. 2018;15:27–32.

    CAS  Google Scholar 

  42. Abd El-Kader SM, Al-Jiffri OH. Impact of weight reduction on insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients. Afr Health Sci. 2018;18:873–83. https://doi.org/10.4314/ahs.v18i4.5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Firszt-Adamczyk A, Ruszkowska-Ciastek B, Adamczyk P, Szafkowski R, Firszt M, Ponikowska I, et al. Effect of a 3-Week Low-Calorie Diet and Balneological Treatment on Selected Coagulation Parameters in Morbidly Obese Patients. Adv Clin Exp Med. 2016;25:755–61. https://doi.org/10.17219/acem/42414.

    Article  PubMed  Google Scholar 

  44. Duggan C, Tapsoba JDD, Wang C-Y, McTiernan A. Dietary Weight Loss and Exercise Effects on Serum Biomarkers of Angiogenesis in Overweight Postmenopausal Women: A Randomized Controlled Trial. Cancer Res. 2016;76:4226–35. https://doi.org/10.1158/0008-5472.CAN-16-0399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berk KA, Oudshoorn TP, Verhoeven AJM, Mulder MT, Roks AJM, Dik WA, et al. Diet-induced weight loss and markers of endothelial dysfunction and inflammation in treated patients with type 2 diabetes. Clin Nutr ESPEN. 2016;15:101–6. https://doi.org/10.1016/j.clnesp.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  46. Egert S, Baxheinrich A, Lee-Barkey YH, Tschoepe D, Wahrburg U, Stratmann B. Effects of an energy-restricted diet rich in plant-derived α-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits. Br J Nutr. 2014;112:1315–22. https://doi.org/10.1017/s0007114514002001.

    Article  CAS  PubMed  Google Scholar 

  47. Torres MRSG, Sanjuliani AF. Effects of weight loss from a high-calcium energy-reduced diet on biomarkers of inflammatory stress, fibrinolysis, and endothelial function in obese subjects. Nutrition. 2013;29:143–51. https://doi.org/10.1016/j.nut.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  48. Fernández JM, Rosado-Álvarez D, Da Silva Grigoletto ME, Rangel-Zúñiga OA, Landaeta-Díaz LL, Caballero-Villarraso J, et al. Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (Lond). 2012;123:361–73. https://doi.org/10.1042/cs20110477.

    Article  PubMed  Google Scholar 

  49. Fayh AP, Lopes AL, da Silva AM, Reischak-Oliveira A, Friedman R. Effects of 5 % weight loss through diet or diet plus exercise on cardiovascular parameters of obese: a randomized clinical trial. Eur J Nutr. 2013;52:1443–50. https://doi.org/10.1007/s00394-012-0450-1.

    Article  CAS  PubMed  Google Scholar 

  50. Cullberg K, Christiansen T, Paulsen S, Bruun J, Pedersen S, Richelsen B. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects. Obesity. 2013;21:454–60. https://doi.org/10.1002/oby.20060.

    Article  CAS  PubMed  Google Scholar 

  51. Mavri A, Poredoš P, Suran D, Gaborit B, Juhan-Vague I, Poredoš P. Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting. Heart Vessels. 2011;26:31–38. https://doi.org/10.1007/s00380-010-0016-1.

    Article  PubMed  Google Scholar 

  52. Khoo J, Piantadosi C, Duncan R, Worthley SG, Jenkins A, Noakes M, et al. Comparing Effects of a Low‐energy Diet and a High‐protein Low‐fat Diet on Sexual and Endothelial Function, Urinary Tract Symptoms, and Inflammation in Obese Diabetic Men. J Sex Med. 2011;8:2868–75. https://doi.org/10.1111/j.1743-6109.2011.02417.x.

    Article  CAS  PubMed  Google Scholar 

  53. Davis NJ, Crandall JP, Gajavelli S, Berman JW, Tomuta N, Wylie-Rosett J, et al. Differential effects of low-carbohydrate and low-fat diets on inflammation and endothelial function in diabetes. J Diabetes its Complications. 2011;25:371–6. https://doi.org/10.1016/j.jdiacomp.2011.08.001.

    Article  Google Scholar 

  54. Wycherley TP, Brinkworth GD, Keogh JB, Noakes M, Buckley JD, Clifton PM. Long-term effects of weight loss with a very low carbohydrate and low fat diet on vascular function in overweight and obese patients. J Intern Med. 2010;267:452–61. https://doi.org/10.1111/j.1365-2796.2009.02174.x.

    Article  CAS  PubMed  Google Scholar 

  55. Miyaki A, Maeda S, Yoshizawa M, Misono M, Saito Y, Sasai H, et al. Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology. 2008;60:351–7. https://doi.org/10.1177/0003319708325449.

    Article  PubMed  Google Scholar 

  56. Wycherley TP, Brinkworth GD, Noakes M, Buckley JD, Clifton PM. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10:1062–73. https://doi.org/10.1111/j.1463-1326.2008.00863.x.

    Article  CAS  PubMed  Google Scholar 

  57. Keogh JB, Brinkworth GD, Noakes M, Belobrajdic DP, Buckley JD, Clifton PM. Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity. Am J Clin Nutr. 2008;87:567–76. https://doi.org/10.1093/ajcn/87.3.567.

    Article  CAS  PubMed  Google Scholar 

  58. Roberts CK, Won D, Pruthi S, Kurtovic S, Sindhu RK, Vaziri ND, et al. Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors. J Appl Physiol. 2006;100:1657–65. https://doi.org/10.1152/japplphysiol.01292.2005.

    Article  CAS  PubMed  Google Scholar 

  59. Angelico F, Loffredo L, Pignatelli P, Augelletti T, Carnevale R, Pacella A, et al. Weight loss is associated with improved endothelial dysfunction via NOX2-generated oxidative stress down-regulation in patients with the metabolic syndrome. Intern Emerg Med. 2012;7:219–27. https://doi.org/10.1007/s11739-011-0591-x.

    Article  PubMed  Google Scholar 

  60. Maeda S, Jesmin S, Iemitsu M, Otsuki T, Matsuo T, Ohkawara K, et al. Weight loss reduces plasma endothelin-1 concentration in obese men. Exp Biol Med (Maywood). 2006;231:1044–7.

    CAS  PubMed  Google Scholar 

  61. Alizadeh M, Daneghian S, Ghaffari A, Ostadrahimi A, Safaeiyan A, Estakhri R, et al. The effect of hypocaloric diet enriched in legumes with or without L-arginine and selenium on anthropometric measures in central obese women. J Res Med Sci. 2010;15:331–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fenster CP, Darley-Usmar VM, Landar AL, Gower BA, Weinsier RL, Hunter GR, et al. Weight loss and race modulate nitric oxide metabolism in overweight women. Free Radic Biol Med. 2004;37:695–702. https://doi.org/10.1016/j.freeradbiomed.2004.05.021.

    Article  CAS  PubMed  Google Scholar 

  63. Joris PJ, Zeegers MP, Mensink RP. Weight loss improves fasting flow-mediated vasodilation in adults: a meta-analysis of intervention studies. Atherosclerosis. 2015;239:21–30. https://doi.org/10.1016/j.atherosclerosis.2014.12.056.

    Article  CAS  PubMed  Google Scholar 

  64. Porter Starr KN, Orenduff M, McDonald SR, Mulder H, Sloane R, Pieper CF, et al. Influence of Weight Reduction and Enhanced Protein Intake on Biomarkers of Inflammation in Older Adults with Obesity. J Nutr Gerontol Geriatr. 2019;38:33–49. https://doi.org/10.1080/21551197.2018.1564200.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bellido C, López-Miranda J, Pérez-Martínez P, Paz E, Marín C, Gómez P, et al. The Mediterranean and CHO diets decrease VCAM-1 and E-selectin expression induced by modified low-density lipoprotein in HUVECs. Nutr Metab Cardiovasc Dis. 2006;16:524–30. https://doi.org/10.1016/j.numecd.2005.09.007.

    Article  CAS  PubMed  Google Scholar 

  66. González-Amaro R, Díaz-González F, Sánchez-Madrid F. Adhesion molecules in inflammatory diseases. Drugs. 1998;56:977–88. https://doi.org/10.2165/00003495-199856060-00003.

    Article  PubMed  Google Scholar 

  67. Smith CW. Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharm. 1993;71:76–87. https://doi.org/10.1139/y93-012.

    Article  CAS  Google Scholar 

  68. Habas K, Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 2018;54:139–43. https://doi.org/10.1016/j.tice.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  69. Golias C, Tsoutsi E, Matziridis A, Makridis P, Batistatou A, Charalabopoulos K. Review. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. Vivo. 2007;21:757–69.

    CAS  Google Scholar 

  70. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol. 2002;21:109–16.

    CAS  PubMed  Google Scholar 

  71. Ito H, Ohshima A, Inoue M, Ohto N, Nakasuga K, Kaji Y, et al. Weight reduction decreases soluble cellular adhesion molecules in obese women. Clin Exp Pharm Physiol. 2002;29:399–404. https://doi.org/10.1046/j.1440-1681.2002.03672.x.

    Article  CAS  Google Scholar 

  72. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–67. https://doi.org/10.1038/nrd2466.

    Article  CAS  PubMed  Google Scholar 

  73. Marfella R, Esposito K, Giunta R, Coppola G, De Angelis L, Farzati B, et al. Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation. 2000;101:2247–51. https://doi.org/10.1161/01.cir.101.19.2247.

    Article  CAS  PubMed  Google Scholar 

  74. Ashor AW, Chowdhury S, Oggioni C, Qadir O, Brandt K, Ishaq A, et al. Inorganic Nitrate Supplementation in Young and Old Obese Adults Does Not Affect Acute Glucose and Insulin Responses but Lowers Oxidative Stress. J Nutr. 2016;146:2224–32. https://doi.org/10.3945/jn.116.237529.

    Article  CAS  PubMed  Google Scholar 

  75. Brennan AM, Standley RA, Yi F, Carnero EA, Sparks LM, Goodpaster BH. Individual Response Variation in the Effects of Weight Loss and Exercise on Insulin Sensitivity and Cardiometabolic Risk in Older Adults. Front Endocrinol (Lausanne). 2020;11:632. https://doi.org/10.3389/fendo.2020.00632.

    Article  PubMed  Google Scholar 

  76. Escalante-Pulido M, Escalante-Herrera A, Milke-Najar ME, Alpizar-Salazar M. Effects of weight loss on insulin secretion and in vivo insulin sensitivity in obese diabetic and non-diabetic subjects. Diabetes Nutr Metab. 2003;16:277–83.

    CAS  PubMed  Google Scholar 

  77. Velasquez-Mieyer PA, Cowan PA, Arheart KL, Buffington CK, Spencer KA, Connelly BE, et al. Suppression of insulin secretion is associated with weight loss and altered macronutrient intake and preference in a subset of obese adults. Int J Obes Relat Metab Disord. 2003;27:219–26. https://doi.org/10.1038/sj.ijo.802227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen NG, Holmes M, Reaven GM. Relationship between insulin resistance, soluble adhesion molecules, and mononuclear cell binding in healthy volunteers. J Clin Endocrinol Metab. 1999;84:3485–9. https://doi.org/10.1210/jcem.84.10.6065.

    Article  CAS  PubMed  Google Scholar 

  79. Montani THA, Jean P Overview of Angiogenesis. In: Morgan & Claypool Life Sciences, 2010.

  80. Kliche S, Waltenberger J. VEGF receptor signaling and endothelial function. IUBMB Life. 2001;52:61–66. https://doi.org/10.1080/15216540252774784.

    Article  CAS  PubMed  Google Scholar 

  81. Tio RA, Wijpkema J, Tan ES, Asselbergs FW, Hospers GAP, Jessurun GAJ, et al. Reduction of endothelial dysfunction following VEGF gene therapy. Neth Heart J. 2005;13:139–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998;98:2108–16. https://doi.org/10.1161/01.cir.98.20.2108.

    Article  CAS  PubMed  Google Scholar 

  83. Nezu T, Hosomi N, Aoki S, Matsumoto M. Carotid Intima-Media Thickness for Atherosclerosis. J Atheroscler Thromb. 2016;23:18–31. https://doi.org/10.5551/jat.31989.

    Article  CAS  PubMed  Google Scholar 

  84. García de la Torre N, Rubio MA, Bordiú E, Cabrerizo L, Aparicio E, Hernández C, et al. Effects of Weight Loss after Bariatric Surgery for Morbid Obesity on Vascular Endothelial Growth Factor-A, Adipocytokines, and Insulin. J Clin Endocrinol Metab. 2008;93:4276–81. https://doi.org/10.1210/jc.2007-1370.

    Article  CAS  PubMed  Google Scholar 

  85. Sanft TB, Cartmel B, Harrigan M, Li F, Loftfield E, Playdon M, et al. Impact of weight loss and exercise on VEGF levels in breast cancer survivors. J Clin Oncol. 2016;34:10103. https://doi.org/10.1200/JCO.2016.34:15_suppl.10103.

    Article  Google Scholar 

  86. Primrose JN, Davies JA, Prentice CR, Hughes R, Johnston D. Reduction in factor VII, fibrinogen and plasminogen activator inhibitor-1 activity after surgical treatment of morbid obesity. Thromb Haemost. 1992;68:396–9.

    Article  CAS  PubMed  Google Scholar 

  87. Astrup AS, Tarnow L, Pietraszek L, Schalkwijk CG, Stehouwer CD, Parving HH, et al. Markers of endothelial dysfunction and inflammation in type 1 diabetic patients with or without diabetic nephropathy followed for 10 years: association with mortality and decline of glomerular filtration rate. Diabetes Care. 2008;31:1170–6. https://doi.org/10.2337/dc07-1960.

    Article  CAS  PubMed  Google Scholar 

  88. Persson F, Rossing P, Hovind P, Stehouwer CD, Schalkwijk CG, Tarnow L, et al. Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria (IRMA 2) study. Scand J Clin Lab Invest. 2008;68:731–8. https://doi.org/10.1080/00365510802187226.

    Article  CAS  PubMed  Google Scholar 

  89. Hunt KJ, Baker NL, Cleary PA, Klein R, Virella G, Lopes-Virella MF. Longitudinal Association Between Endothelial Dysfunction, Inflammation, and Clotting Biomarkers With Subclinical Atherosclerosis in Type 1 Diabetes: An Evaluation of the DCCT/EDIC Cohort. Diabetes Care. 2015;38:1281–9. https://doi.org/10.2337/dc14-2877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Nottingham University.

Author information

Authors and Affiliations

Authors

Contributions

MS conceptualized the study. RM, ZA and MS conducted the search and screened the articles. RM and MS conducted the analysis and wrote the manuscript. MS is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors contributed to the discussion and interpretation of data, and reviewed / critically edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mario Siervo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, R., Ahmid, Z., Ashor, A.W. et al. Effects of dietary-based weight loss interventions on biomarkers of endothelial function: a systematic review and meta-analysis. Eur J Clin Nutr 77, 927–940 (2023). https://doi.org/10.1038/s41430-023-01307-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01307-6

Search

Quick links