Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

The relationship between body mass index and N-terminal pro-B-type natriuretic peptide in community-acquired pneumonia

Abstract

Background

The relationship between body mass index (BMI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) has not been fully investigated in patients with community-acquired pneumonia (CAP).

Methods

This prospective observational study examined 510 consecutive patients hospitalized for CAP. NT-proBNP, BMI, and the pneumonia severity index (PSI) were determined for all participants. The moderating effects of BMI on the relationship between NT-proBNP and CAP mortality were examined using interaction terms in a multivariable regression model. The ability of NT-proBNP to predict mortality was evaluated using the area under the curve (AUC).

Results

A significant inverse relationship was observed between BMI and NT-proBNP. After multivariable adjustment including BMI, NT-proBNP remained a significant predictor of CAP mortality. The AUC of the fully adjusted (including BMI) NT-proBNP model was significantly higher than that excluding BMI (p = 0.021) and that of PSI (p = 0.038), respectively. The predictive performance of NT-proBNP for mortality significantly differed by BMI group, with the NT-proBNP of the overweight and obesity group having a significantly higher AUC than that of the underweight and normal-weight group. The AUC of NT-proBNP was significantly higher and tended to be higher than that of PSI in the overweight group (p = 0.013) and the obesity group (p = 0.113), respectively.

Conclusions

BMI significantly strengthens the prognostic performance of NT-proBNP in CAP patients. The BMI–NT-proBNP interaction is significantly associated with CAP mortality, but as a prognostic determinant for CAP, NT-proBNP seems to be more useful for overweight and obese patients than for underweight and normal-weight patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The predictive performance of NT-proBNP for the whole population.
Fig. 2: The interaction effect for mortality according to incremental changes in NT-proBNP levels.
Fig. 3: Comparison of NT-proBNP and PSI for predicting 30-day mortality.
Fig. 4: The comparison of mortality rates according to the cut-off value of NT-proBNP.

Similar content being viewed by others

References

  1. Colice GL, Morley MA, Asche C, Birnbaum HG. Treatment costs of community-acquired pneumonia in an employed population. Chest. 2004;125:2140–5. https://doi.org/10.1378/chest.125.6.2140

    Article  PubMed  Google Scholar 

  2. Fine MJ, Smith MA, Carson CA, Mutha SS, Sankey SS, Weissfeld LA, et al. Prognosis and outcomes of patients with community-acquired pneumonia: a meta-analysis. JAMA. 1996;275:134–41. https://doi.org/10.1001/jama.1996.03530260048030

    Article  CAS  PubMed  Google Scholar 

  3. Blasi F, Garau J, Medina J, Ávila M, McBride K, Ostermann H, REACH study group. Current management of patients hospitalized with community-acquired pneumonia across Europe: outcomes from REACH. Respir Res. 2013;14:44 https://doi.org/10.1186/1465-9921-14-44

    Article  PubMed  Google Scholar 

  4. Almirall J, Serra-Prat M, Bolibar I, Balasso V. Risk factors for community-acquired pneumonia in adults: a systematic review of observational studies. Respiration. 2017;94:299–311. https://doi.org/10.1159/000479089

    Article  PubMed  Google Scholar 

  5. Kuczmarski RJ, Carroll MD, Flegal KM, Troiano RP. Varying body mass index cutoff points to describe overweight prevalence among US adults: NHANES III (1988 to 1994). Obes Res. 1997;5:542–8. https://doi.org/10.1002/j.1550-8528.1997.tb00575.x

    Article  CAS  PubMed  Google Scholar 

  6. Maruyama T, Gabazza EC, Morser J, Takagi T, D’Alessandro-Gabazza C, Hirohata S, et al. Community-acquired pneumonia and nursing home-acquired pneumonia in the very elderly patients. Respir Med. 2010;104:584–92. https://doi.org/10.1016/j.rmed.2009.12.008

    Article  PubMed  Google Scholar 

  7. Murugan AT, Sharma G. Obesity and respiratory diseases. Chron Respir Dis. 2008;5:233–42. https://doi.org/10.1177/1479972308096978

    Article  CAS  PubMed  Google Scholar 

  8. Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q. Obesity survival paradox in pneumonia: a meta-analysis. BMC Med. 2014;12:61 https://doi.org/10.1186/1741-7015-12-61

    Article  PubMed  Google Scholar 

  9. Braun N, Hoess C, Kutz A, Christ-Crain M, Thomann R, Henzen C, et al. Obesity paradox in patients with community-acquired pneumonia: Is inflammation the missing link? Nutrition. 2017;33:304–10. https://doi.org/10.1016/j.nut.2016.07.016

    Article  PubMed  Google Scholar 

  10. Felder S, Braun N, Stanga Z, Kulkarni P, Faessler L, Kutz A, et al. Unraveling the link between malnutrition and adverse clinical outcomes: association of acute and chronic malnutrition measures with blood biomarkers from different pathophysiological states. Ann Nutr Metab. 2016;68:164–72. https://doi.org/10.1159/000444096

    Article  CAS  PubMed  Google Scholar 

  11. Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, et al. Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch Intern Med. 2008;168:2000–7. https://doi.org/10.1001/archinte.168.18.2000

    Article  PubMed  Google Scholar 

  12. Akpınar EE, Hoşgün D, Akpınar S, Ateş C, Baha A, Gülensoy ES, et al. Do N-terminal pro-brain natriuretic peptide levels determine the prognosis of community acquired pneumonia? J Bras Pneumol. 2019;45:e20180417 https://doi.org/10.1590/1806-3713/e20180417

    Article  PubMed  Google Scholar 

  13. Chang CL, Mills GD, Karalus NC, Jennings LC, Laing R, Murdoch DR, et al. Biomarkers of cardiac dysfunction and mortality from community-acquired pneumonia in adults. PLoS One. 2013;8:e62612 https://doi.org/10.1371/journal.pone.0062612

    Article  CAS  PubMed  Google Scholar 

  14. Nowak A, Breidthardt T, Christ-Crain M, Bingisser R, Meune C, Tanglay Y, et al. Direct comparison of three natriuretic peptides for prediction of short- and long-term mortality in patients with community-acquired pneumonia. Chest. 2012;141:974–82. https://doi.org/10.1378/chest.11-0824

    Article  CAS  PubMed  Google Scholar 

  15. Jeong KY, Kim K, Kim TY, Lee CC, Jo SO, Rhee JE, et al. Prognostic value of N-terminal pro-brain natriuretic peptide in hospitalised patients with community-acquired pneumonia. Emerg Med J. 2011;28:122–7. https://doi.org/10.1136/emj.2009.089383

    Article  PubMed  Google Scholar 

  16. Martolini D, Pistella E, Carmenini E, Santini C. NT-proBNP correlates with the illness scores pneumonia severity index and CURB-65 in patients with pneumonia. Italian. J Med. 2017;11:37–40. https://doi.org/10.4081/itjm.2017.728

    Article  CAS  Google Scholar 

  17. Viasus D, Del Rio-Pertuz G, Simonetti AF, Garcia-Vidal C, Acosta-Reyes J, Garavito A, et al. Biomarkers for predicting short-term mortality in community-acquired pneumonia: a systematic review and meta-analysis. J Infect. 2016;72:273–82. https://doi.org/10.1016/j.jinf.2016.01.002

    Article  PubMed  Google Scholar 

  18. Yıldırım B, Biteker FS, Başaran Ö, Alataş ÖD, Acar E, Sözen H, et al. Is there a potential role for echocardiography in adult patients with CAP? Am J Emerg Med. 2015;33:1672–6. https://doi.org/10.1016/j.ajem.2015.06.036

    Article  PubMed  Google Scholar 

  19. Hall C. Essential biochemistry and physiology of (NT-pro) BNP. Eur J Heart Fail. 2004;6:257–60. https://doi.org/10.1016/j.ejheart.2003.12.015

    Article  CAS  PubMed  Google Scholar 

  20. Balion CM, Santaguida P, McKelvie R, Hill SA, McQueen MJ, Worster A, et al. Physiological, pathological, pharmacological, biochemical and hematological factors affecting BNP and NT-proBNP. Clin Biochem. 2008;41:231–9. https://doi.org/10.1016/j.clinbiochem.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Lewis LK, Raudsepp SD, Prickett TCR, Yandle TG, Doughty RN, Frampton CM, et al. ProBNP that is not glycosylated at threonine 71 is decreased with obesity in patients with heart failure. Clin Chem. 2019;65:1115–24. https://doi.org/10.1373/clinchem.2019.302547

    Article  PubMed  Google Scholar 

  22. Parcha V, Arora P. Glycosylation of natriuretic peptides in obese heart failure: mechanistic insights. Ann Transl Med. 2019;7:611 https://doi.org/10.21037/atm.2019.10.59

    Article  CAS  PubMed  Google Scholar 

  23. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 2000;14:1345–51. https://doi.org/10.1096/fasebj.14.10.1345

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Kaufman S. The influence of reproductive hormones on ANF release by rat atria. Life Sci. 1993;53:689–96. https://doi.org/10.1016/0024-3205(93)90245-x

    Article  CAS  PubMed  Google Scholar 

  25. Beleigoli AM, Diniz MF, Ribeiro AL. Natriuretic peptides: linking heart and adipose tissue in obesity and related conditions-a systematic review. Obes Rev. 2009;10:617–26. https://doi.org/10.1111/j.1467-789X.2009.00624.x

    Article  CAS  PubMed  Google Scholar 

  26. Rivera M, Cortés R, Salvador A, Bertomeu V, de Burgos FG, Payá R, et al. Obese subjects with heart failure have lower N-terminal pro-brain natriuretic peptide plasma levels irrespective of aetiology. Eur J Heart Fail. 2005;7:1168–70. https://doi.org/10.1016/j.ejheart.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  27. Mickey RM, Greenland S. The impact of confounder selection criteria on effect estimation. Am J Epidemiol. 1989;129:125–37. https://doi.org/10.1093/oxfordjournals.aje.a115101

    Article  CAS  PubMed  Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45. https://doi.org/10.2307/2531595

    Article  CAS  PubMed  Google Scholar 

  29. Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol. 2006;47:85–90. https://doi.org/10.1016/j.jacc.2005.08.050

    Article  CAS  PubMed  Google Scholar 

  30. Bayes-Genis A, Lloyd-Jones DM, van Kimmenade RR, Lainchbury JG, Richards AM, Ordoñez-Llanos J, et al. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Arch Intern Med. 2007;167:400–7. https://doi.org/10.1001/archinte.167.4.400

    Article  CAS  PubMed  Google Scholar 

  31. Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51:1775–83. https://doi.org/10.1016/j.jacc.2007.12.048

    Article  CAS  PubMed  Google Scholar 

  32. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006;92:843–9. https://doi.org/10.1136/hrt.2005.071233

    Article  CAS  PubMed  Google Scholar 

  33. Clerico A, Passino C, Franzini M, Emdin M. Cardiac biomarker testing in the clinical laboratory: where do we stand? general overview of the methodology with special emphasis on natriuretic peptides. Clin Chim Acta. 2015;443:17–24. https://doi.org/10.1016/j.cca.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  34. Taylor JA, Christenson RH, Rao K, Jorge M, Gottlieb SS. B-type natriuretic peptide and N-terminal pro B-type natriuretic peptide are depressed in obesity despite higher left ventricular end diastolic pressures. Am Heart J. 2006;152:1071–6. https://doi.org/10.1016/j.ahj.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  35. Noveanu M, Breidthardt T, Cayir S, Potocki M, Laule K, Mueller C. B-type natriuretic peptide-guided management and outcome in patients with obesity and dyspnea-results from the BASEL study. Am Heart J. 2009;158:488–95. https://doi.org/10.1016/j.ahj.2009.05.033

    Article  CAS  PubMed  Google Scholar 

  36. Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M. The International Collaborative of NT-proBNP Study et al.NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients.Eur Heart J.2006;27:330–7. https://doi.org/10.1093/eurheartj/ehi631

    Article  CAS  PubMed  Google Scholar 

  37. Kahlon S, Eurich DT, Padwal RS, Malhotra A, Minhas-Sandhu JK, Marrie TJ, et al. Obesity and outcomes in patients hospitalized with pneumonia. Clin Microbiol Infect. 2013;19:709–16. https://doi.org/10.1111/j.1469-0691.2012.04003.x

    Article  CAS  PubMed  Google Scholar 

  38. Dessì-Fulgheri P, Sarzani R, Rappelli A. Role of the natriuretic peptide system in lipogenesis/lipolysis. Nutr Metab Cardiovasc Dis. 2003;13:244–9. https://doi.org/10.1016/s0939-4753(03)80018-2

    Article  PubMed  Google Scholar 

  39. Campillo B, Paillaud E, Uzan I, Merlier I, Abdellaoui M, Perennec J, et al. Value of body mass index in the detection of severe malnutrition: influence of the pathology and changes in anthropometric parameters. Clin Nutr. 2004;23:551–9. https://doi.org/10.1016/j.clnu.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  40. Tomaru KiK, Arai M, Yokoyama T, Aihara Y, Sekiguchi KiK, Tanaka T, et al. Transcriptional activation of the BNP gene by lipopolysaccharide is mediated through GATA elements in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 2002;34:649–59. https://doi.org/10.1006/jmcc.2002.2005

    Article  CAS  Google Scholar 

  41. Nikolaou NI, Goritsas C, Dede M, Paissios NP, Papavasileiou M, Rombola A, et al. Brain natriuretic peptide increases in septic shock patients without severe sepsis or shock. Eur J Intern Med. 2007;18:535–41. https://doi.org/10.1016/j.ejim.2007.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all (rotating) residents and fellows of the Department of Emergency Medicine involved in the ED pneumonia registry, for assistance with collection and organization of interview and questionnaire data. Our thanks are also due to Su Jin Jeong (Kyung Hee University Medical Center, Medical Science Research Institute) for statistical advice and interpretation of analysis results.

Author information

Authors and Affiliations

Authors

Contributions

JKY: conceptualization, methodology, formal analysis, original draft, critical revision, and supervision; LJS: conceptualization, methodology, original draft, editing, and data management; KSH: conceptualization, formal analysis, original draft, review and editing; LJ: conceptualization, methodology, formal analysis, review and editing.

Corresponding author

Correspondence to Ki Young Jeong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S., Ko, S.H., Lee, J. et al. The relationship between body mass index and N-terminal pro-B-type natriuretic peptide in community-acquired pneumonia. Eur J Clin Nutr 75, 1088–1098 (2021). https://doi.org/10.1038/s41430-020-00817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00817-x

This article is cited by

Search

Quick links