Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevalence and impact of low body mass index on outcomes in patients with adolescent idiopathic scoliosis: a systematic review

Subjects

Abstract

Comparatively lower body mass index (BMI) has been reported in patients with adolescent idiopathic scoliosis (AIS)—a feature which may be an unrecognised symptom, or an organic consequence of the condition. The primary aim of this systematic review is to investigate the relationship between low BMI and AIS. A secondary aim is to investigate the effect of low BMI on outcomes of postsurgical correction in this patient group. The Cochrane Library, PubMed, SCOPUS, Web of Science and Ovid MEDLINE databases were searched up to December 2016 for relevant studies that reported prevalence of low preoperative BMI in patients with AIS and/or compared BMI between patients with AIS and healthy controls, as well as those that examined the relationship between low BMI and postoperative outcomes. Forty-five eligible studies were identified from the search strategy. Mean differences (MDs) were used with 95% confidence intervals (CI) in a random effects model to compare BMI in patients with AIS and controls in a pooled analysis of data from nine eligible studies (n = 3747 patients). In the meta-analysis, BMI of patients in the AIS group was significantly lower than those in the control group (MD −1.19, 95% CI −1.78 to −0.60). Low BMI in AIS can impact postoperative outcomes, including increased risk of ileus. This review demonstrates that patients with AIS are significantly more likely to have a low BMI compared to the general population. We advocate that closer attention be paid to AIS patients with low BMI both pre- and postsurgical correction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark EM, Taylor HJ, Harding I, Hutchinson J, Nelson I, Deanfield JE, et al. Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res. 2014;29(8):1729–36.

    PubMed  Google Scholar 

  2. Lonstein JE. Adolescent idiopathic scoliosis. Lancet. 1994;344(8934):1407–12.

    CAS  PubMed  Google Scholar 

  3. Wong HK, Hui JH, Rajan U, Chia HP. Idiopathic scoliosis in Singapore schoolchildren: a prevalence study 15 years into the screening program. Spine (Phila Pa 1976). 2005;30(10):1188–96.

    Google Scholar 

  4. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9.

    PubMed  Google Scholar 

  5. Wang S, Qiu Y, Zhu Z, Ma Z, Xia C, Zhu F. Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis. J Orthop Surg Res. 2007;2:19.

    PubMed  PubMed Central  Google Scholar 

  6. Do T, Fras C, Burke S, Widmann RF, Rawlins B, Boachie-Adjei O. Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis. A prospective study of three hundred and twenty-seven patients. J Bone Jt Surg Am. 2001;83-A(4):577–9.

    CAS  Google Scholar 

  7. Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, et al. Pathogenesis of adolescent idiopathic scoliosis in girls—a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis. 2009;4:24.

    PubMed  PubMed Central  Google Scholar 

  8. Longworth B, Fary R, Hopper D. Prevalence and predictors of adolescent idiopathic scoliosis in adolescent ballet dancers. Arch Phys Med Rehabil. 2014;95(9):1725–30.

    PubMed  Google Scholar 

  9. Steinberg N, Hershkovitz I, Peleg S, Dar G, Masharawi Y, Zeev A, et al. Morphological characteristics of the young scoliotic dancer. Phys Ther Sport. 2013;14(4):213–20.

    PubMed  Google Scholar 

  10. Tanchev PI, Dzherov AD, Parushev AD, Dikov DM, Todorov MB. Scoliosis in rhythmic gymnasts. Spine (Phila Pa 1976). 2000;25(11):1367–72.

    CAS  Google Scholar 

  11. Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Jt Surg Am. 1984;66(7):1061–71.

    CAS  Google Scholar 

  12. Altaf F, Gibson A, Dannawi Z, Noordeen H. Adolescent idiopathic scoliosis. BMJ. 2013;346:f2508.

    PubMed  Google Scholar 

  13. Miller NH. Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am. 1999;30(3):343–52.

    CAS  PubMed  Google Scholar 

  14. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371(9623):1527–37.

    PubMed  Google Scholar 

  15. Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis. 2006;1(1):2.

    PubMed  PubMed Central  Google Scholar 

  16. Lonner BSTC, Husain QM, Sponseller P, Shufflebarger H, Shah SA, Samdani AF.et al.Body mass index in adolescent spinal deformity: comparison of Sheuermann’s kyphosis, adolescent idiopathic scoliosis, and normal controls. Spine Deform. 2015;3:318–26.

    PubMed  Google Scholar 

  17. Ramirez M, Martinez-Llorens J, Sanchez JF, Bago J, Molina A, Gea J, et al. Body composition in adolescent idiopathic scoliosis. Eur Spine J. 2013;22(2):324–9.

    PubMed  Google Scholar 

  18. Barrios C, Cortes S, Perez-Encinas C, Escriva MD, Benet I, Burgos J, et al. Anthropometry and body composition profile of girls with nonsurgically treated adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011;36(18):1470–7.

    Google Scholar 

  19. Tarrant RC, Nugent M, Nugent AP, Queally JM, Moore DP, Kiely PJ. Anthropometric characteristics, high prevalence of undernutrition and weight loss: impact on outcomes in patients with adolescent idiopathic scoliosis after spinal fusion. Eur Spine J. 2015;24(2):281–9.

    PubMed  Google Scholar 

  20. Yim AP, Yeung HY, Hung VW, Lee KM, Lam TP, Ng BK, et al. Abnormal skeletal growth patterns in adolescent idiopathic scoliosis--a longitudinal study until skeletal maturity. Spine (Phila Pa 1976). 2012;37(18):E1148–54.

    Google Scholar 

  21. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int. 2005;16(9):1024–35.

    CAS  PubMed  Google Scholar 

  22. Oh CH, Yoon SH, Park HC, Park CO, Kim SY. A comparison of the somatometric measurements of adolescent males with and without idiopathic scoliosis. J Spinal Disord Tech. 2014;27(1):E26–31.

    PubMed  Google Scholar 

  23. Shohat M, Shohat T, Nitzan M, Mimouni M, Kedem R, Danon YL. Growth and ethnicity in scoliosis. Acta Orthop Scand. 1988;59(3):310–3.

    CAS  PubMed  Google Scholar 

  24. Wang W, Wang Z, Zhu Z, Zhu F, Qiu Y. Body composition in males with adolescent idiopathic scoliosis: a case-control study with dual-energy X-ray absorptiometry. BMC Musculoskelet Disord. 2016;17:107.

    PubMed  PubMed Central  Google Scholar 

  25. Nicolopoulos KS, Burwell RG, Webb JK. Stature and its components in adolescent idiopathic scoliosis. Cephalo-caudal disproportion in the trunk of girls. J Bone Jt Surg Br. 1985;67(4):594–601.

    CAS  Google Scholar 

  26. Nissinen M, Heliovaara M, Seitsamo J, Poussa M. Trunk asymmetry, posture, growth, and risk of scoliosis. A three-year follow-up of Finnish prepubertal school children. Spine (Phila Pa 1976). 1993;18(1):8–13.

    CAS  Google Scholar 

  27. Goldberg CJ, Moore DP, Fogarty EE, Dowling FE. Interrelationship between Cobb angle progression, BMI and growth rate in girls with adolescent idiopathic scoliosis. J Bone Jt Surg [Br]. 2010;92-B(Supp III):430.

    Google Scholar 

  28. Grivas TB, Arvaniti A, Maziotou C, Manesioti MM, Fergadi A. Comparison of body weight and height between normal and scoliotic children. Stud Health Technol Inform. 2002;91:47–53.

    PubMed  Google Scholar 

  29. Burwell RG, Aujla RK, Kirby AS, Dangerfield PH, Moulton A, Cole AA, et al. Body mass index of girls in health influences menarche and skeletal maturation: a leptin-sympathetic nervous system focus on the trunk with hypothalamic asymmetric dysfunction in the pathogenesis of adolescent idiopathic scoliosis? Stud Health Technol Inform. 2008;140:9–21.

    CAS  PubMed  Google Scholar 

  30. Dangerfield P, Davey RC, Chockalingam N, Cochrane T, Dorgan JC. Body composition in females with adolescent idiopathic scoliosis (AIS). J Bone & Jt Surg, Br Vol. 2006;88-B(SUPP II):230–1.

    Google Scholar 

  31. Tarrant RC, Lynch S, Sheeran P, O’Loughlin PF, Harrington M, Moore DP, et al. Low body mass index in adolescent idiopathic scoliosis: relationship with pre- and postsurgical factors. Spine (Phila Pa 1976). 2014;39(2):140–8.

    Google Scholar 

  32. Perez-Prieto D, Sanchez-Soler JF, Martinez-Llorens J, Mojal S, Bago J, Caceres E, et al. Poor outcomes and satisfaction in adolescent idiopathic scoliosis surgery: the relevance of the body mass index and self-image. Eur Spine J. 2015;24(2):276–80.

    PubMed  Google Scholar 

  33. De La Rocha AMA, Sucato DJ. Increased body mass index negatively affects patient satisfaction after a posterior fusion and instrumentation for adolescent idiopathic scoliosis. Spine Deform. 2014;2:208–13.

    Google Scholar 

  34. Smith BG, Hakim-Zargar M, Thomson JD. Low body mass index: a risk factor for superior mesenteric artery syndrome in adolescents undergoing spinal fusion for scoliosis. J Spinal Disord Tech. 2009;22(2):144–8.

    PubMed  Google Scholar 

  35. Braun SV, Hedden DM, Howard AW. Superior mesenteric artery syndrome following spinal deformity correction. J Bone Jt Surg Am. 2006;88(10):2252–7.

    Google Scholar 

  36. Laplaza FJ, Widmann RF, Fealy S, Moustafellos E, Illueca M, Burke SW, et al. Pancreatitis after surgery in adolescent idiopathic scoliosis: incidence and risk factors. J Pediatr Orthop. 2002;22(1):80–3.

    PubMed  Google Scholar 

  37. Matusik E, Durmala J, Matusik P. Association of body composition with curve severity in children and adolescents with idiopathic scoliosis (IS). Nutrients . 2016;8(2):71.

    PubMed  PubMed Central  Google Scholar 

  38. Liu Z, Zhu Z, Guo J, Mao S, Wang W, Qian B, et al. Analysis of body growth parameters in girls with adolescent idiopathic scoliosis: single thoracic idiopathic scoliosis versus single lumbar idiopathic scoliosis. Stud Health Technol Inform. 2012;176:195–201.

    PubMed  Google Scholar 

  39. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    PubMed  PubMed Central  Google Scholar 

  40. Katyal C, Grossman S, Dworkin A, Singer L, Amaral T, Sugarman E, Wollowwick A, Sarwahi V. Increased risk of infection in obese adolescents after pedicle screw instrumentation for idiopathic scoliosis. Spine Deform. 2015;3:166–71.

    PubMed  Google Scholar 

  41. Hardesty CK, Poe-Kochert C, Son-Hing JP, Thompson GH. Obesity negatively affects spinal surgery in idiopathic scoliosis. Clin Orthop Relat Res. 2013;471(4):1230–5.

    PubMed  Google Scholar 

  42. Upasani VV, Caltoum C, Petcharaporn M, Bastrom T, Pawelek J, Marks M, et al. Does obesity affect surgical outcomes in adolescent idiopathic scoliosis? Spine (Phila Pa 1976). 2008;33(3):295–300.

    Google Scholar 

  43. Tyrakowski M, Kotwicki T, Czubak J, Siemionow K. Calculation of corrected body height in idiopathic scoliosis: comparison of four methods. Eur Spine J. 2014;23(6):1244–50.

    PubMed  Google Scholar 

  44. Bjure J, Grimby G, Nachemson A. Correction of body height in predicting spirometric values in scoliotic patients. Scand J Clin Lab Invest. 1968;21(2):191–2.

    CAS  PubMed  Google Scholar 

  45. Kono K, Asazuma T, Suzuki N, Ono T. Body height correction in scoliosis patients for pulmonary function test. J Orthop Surg (Hong Kong). 2000;8(1):19–26.

    CAS  Google Scholar 

  46. Ylikoski M. Height of girls with adolescent idiopathic scoliosis. Eur Spine J. 2003;12(3):288–91.

    PubMed  PubMed Central  Google Scholar 

  47. Stokes IA. Stature and growth compensation for spinal curvature. Stud Health Technol Inform. 2008;140:48–51.

    CAS  PubMed  Google Scholar 

  48. Tam EM, Liu Z, Lam TP, Ting T, Cheung G, Ng BK, et al. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine (Phila Pa 1976). 2016;41(11):940–6.

    Google Scholar 

  49. Cheng JC, Leung SS, Lau J. Anthropometric measurements and body proportions among Chinese children. Clin Orthop Relat Res. 1996;323:22–30.

    Google Scholar 

  50. Goodbody CM, Asztalos IB, Sankar WN, Flynn JM. It’s not just the big kids: both high and low BMI impact bracing success for adolescent idiopathic scoliosis. J Child Orthop. 2016;10(5):395–404.

    PubMed  PubMed Central  Google Scholar 

  51. Margalit A, McKean G, Constantine A, Thompson CB, Lee RJ, Sponseller PD. Body mass hides the curve: thoracic scoliometer readings vary by body mass index value. J Pediatr Orthop. 2017;37(4):e255–e260.

    PubMed  PubMed Central  Google Scholar 

  52. Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335(7612):194.

    PubMed  PubMed Central  Google Scholar 

  53. Starcevic-Klasan G, Cvijanovic O, Peharec S, Zulle M, Arbanas J, Ivancic Jokic N, et al. Anthropometric parameters as predictors for iliopsoas muscle strength in healthy girls and in girls with adolescent idiopathic scoliosis. Coll Antropol. 2008;32(2):461–6.

    PubMed  Google Scholar 

  54. Szalay EA, Bosch P, Schwend RM, Buggie B, Tandberg D, Sherman F. Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976). 2008;33(7):802–6.

    Google Scholar 

  55. Sales de Gauzy J, Gennero I, Delrous O, Salles JP, Lepage B, Accadbled F. Fasting total ghrelin levels are increased in patients with adolescent idiopathic scoliosis. Scoliosis. 2015;10:33.

    PubMed  PubMed Central  Google Scholar 

  56. Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(24):2703–10.

    Google Scholar 

  57. Smith FM, Latchford GJ, Hall RM, Dickson RA. Do chronic medical conditions increase the risk of eating disorder? A cross-sectional investigation of eating pathology in adolescent females with scoliosis and diabetes. J Adolesc Health. 2008;42(1):58–63.

    PubMed  Google Scholar 

  58. Wei-Jun W, Xu S, Zhi-Wei W, Xu-Sheng Q, Zhen L, Yong Q. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. Eur Spine J. 2012;21(1):77–83.

    PubMed  Google Scholar 

  59. Zaina F, Donzelli S, Lusini M, Vismara L, Capodaglio P, Neri L, et al. Adolescent idiopathic scoliosis and eating disorders: is there a relation? Results of a cross-sectional study. Res Dev Disabil. 2013;34(4):1119–24.

    PubMed  Google Scholar 

  60. Basques BA, Bohl DD, Golinvaux NS, Smith BG, Grauer JN. Patient factors are associated with poor short-term outcomes after posterior fusion for adolescent idiopathic scoliosis. Clin Orthop Relat Res. 2015;473(1):286–94.

    PubMed  Google Scholar 

  61. Matusik E, Durmala J, Matusik P, Piotrowski J. Evaluation of nutritional status of children and adolescents with idiopathic scoliosis: a pilot study. Ortop Traumatol Rehabil. 2012;14(4):351–62.

    PubMed  Google Scholar 

  62. Smith FM, Latchford G, Hall RM, Millner PA, Dickson RA. Indications of disordered eating behaviour in adolescent patients with idiopathic scoliosis. J Bone Jt Surg Br. 2002;84(3):392–4.

    CAS  Google Scholar 

  63. Sun W, Zhou J, Sun M, Qin X, Qiu Y, Zhu Z. et al. Low body mass index can be predictive of bracing failure in patients with adolescent idiopathic scoliosis: a retrospective study. Eur Spine J.2017;26(6):1665–1669.

    PubMed  Google Scholar 

  64. Johnston CE, Richards BS, Sucato DJ, Bridwell KH, Lenke LG, Erickson M, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011;36(14):1096–102.

    Google Scholar 

  65. Xu L, Sun X, Zhu Z, Qiao J, Mao S, Qiu Y. Body mass index as an indicator of pulmonary dysfunction in patients with adolescent idiopathic scoliosis. J Spinal Disord Tech. 2015;28(6):226–31.

    PubMed  Google Scholar 

  66. Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, Guo X, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976). 2003;28(18):2152–7.

    Google Scholar 

  67. Liu ZQY, Qiu X, Sun X. Body mass index in Chinese girls with adolescent idiopathic scoliosis. Eur Spine J. 2009;18(Suppl 4):S445–S70.

    Google Scholar 

  68. Suh KT, Kim SJ, Lee JS. Body mass index and bone mineral density in patients with adolescent idiopathic. Scoliosis J Korean Orthop Assoc. 2007;42(1):125–30.

    Google Scholar 

  69. Hershkovich O, Friedlander A, Gordon B, Arzi H, Derazne E, Tzur D, et al. Association between body mass index, body height, and the prevalence of spinal deformities. Spine J: Off J North Am Spine Soc. 2014;14(8):1581–7.

    Google Scholar 

  70. Wang WJ, Hung VW, Lam TP, Ng BK, Qin L, Lee KM, et al. The association of disproportionate skeletal growth and abnormal radius dimension ratio with curve severity in adolescent idiopathic scoliosis. Eur Spine J: Off Publ Eur Spine Soc, Eur Spinal Deform Soc, Eur Sect Cerv Spine Res Soc. 2010;19(5):726–31.

    Google Scholar 

  71. Lam DJ, Lee JZ, Chua JH, Lee YT, Lim KB. Superior mesenteric artery syndrome following surgery for adolescent idiopathic scoliosis: a case series, review of the literature, and an algorithm for management. J Pediatr Orthop B. 2014;23(4):312–8.

    PubMed  Google Scholar 

  72. Ho C, Sucato DJ, Richards BS. Risk factors for the development of delayed infections following posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976). 2007;32(20):2272–7.

    Google Scholar 

  73. Connelly M, Fulmer RD, Prohaska J, Anson L, Dryer L, Thomas V, et al. Predictors of postoperative pain trajectories in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2014;39(3):E174–81.

    Google Scholar 

  74. Landman Z, Oswald T, Sanders J, Diab M, Spinal Deformity Study G. Prevalence and predictors of pain in surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011;36(10):825–9.

    Google Scholar 

  75. Koch KD, Buchanan R, Birch JG, Morton AA, Gatchel RJ, Browne RH. Adolescents undergoing surgery for idiopathic scoliosis: how physical and psychological characteristics relate to patient satisfaction with the cosmetic result. Spine (Phila Pa 1976). 2001;26(19):2119–24.

    CAS  Google Scholar 

  76. Alborghetti A, Scimeca G, Costanzo G, Boca S. The prevalence of eating disorders in adolescents with idiopathic scoliosis. Eat Disord. 2008;16(1):85–93.

    PubMed  Google Scholar 

  77. Cheung CS, Lee WT, Tse YK, Lee KM, Guo X, Qin L, et al. Generalized osteopenia in adolescent idiopathic scoliosis—association with abnormal pubertal growth, bone turnover, and calcium intake? Spine (Phila Pa 1976). 2006;31(3):330–8.

    Google Scholar 

  78. Ostlund RE Jr., Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab. 1996;81(11):3909–13.

    CAS  PubMed  Google Scholar 

  79. Burwell RG, Dangerfield PH, Moulton A, Anderson SI. Etiologic theories of idiopathic scoliosis: autonomic nervous system and the leptin-sympathetic nervous system concept for the pathogenesis of adolescent idiopathic scoliosis. Stud Health Technol Inform. 2008;140:197–207.

    CAS  PubMed  Google Scholar 

  80. Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine (Phila Pa 1976). 2012;37(7):599–604.

    Google Scholar 

  81. Bowen RE, Scaduto AA, Banuelos S. Decreased body mass index and restrictive lung disease in congenital thoracic scoliosis. J Pediatr Orthop. 2008;28(6):665–8.

    PubMed  Google Scholar 

  82. Wagner PD. Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J. 2008;31(3):492–501.

    CAS  PubMed  Google Scholar 

  83. Weber DR, Leonard MB, Shults J, Zemel BS. A comparison of fat and lean body mass index to BMI for the identification of metabolic syndrome in children and adolescents. J Clin Endocrinol Metab. 2014;99(9):3208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu ZZ, Qiu Y. Superior mesenteric artery syndrome following scoliosis surgery: its risk indicators and treatment strategy. World J Gastroenterol. 2005;11(21):3307–10.

    PubMed  PubMed Central  Google Scholar 

  85. Kim JY, Kim HS, Moon ES, Park JO, Shin DE, Lee GK, et al. Incidence and risk factors associated with superior mesenteric artery syndrome following surgical correction of scoliosis. Asian Spine J. 2008;2(1):27–33.

    PubMed  PubMed Central  Google Scholar 

  86. Tsirikos AI, Anakwe RE, Baker AD. Late presentation of superior mesenteric artery syndrome following scoliosis surgery: a case report. J Med Case Rep. 2008;2:9.

    PubMed  PubMed Central  Google Scholar 

  87. Tsirikos AI, Jeans LA. Superior mesenteric artery syndrome in children and adolescents with spine deformities undergoing corrective surgery. J Spinal Disord Tech. 2005;18(3):263–71.

    PubMed  Google Scholar 

  88. Shah MA, Albright MB, Vogt MT, Moreland MS. Superior mesenteric artery syndrome in scoliosis surgery: weight percentile for height as an indicator of risk. J Pediatr Orthop. 2003;23(5):665–8.

    PubMed  Google Scholar 

  89. Nichols J, Going S, Loftin M, Stewart D, Nowicki E, Pickrel J. Comparison of two bioelectrical impedance analysis instruments for determining body composition in adolescent girls. Int J Body Compos Res. 2006;4(4):153–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F. Body-composition measurement in 9-11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. Am J Clin Nutr. 1996;63(3):287–92.

    CAS  PubMed  Google Scholar 

  91. Okasora K, Takaya R, Tokuda M, Fukunaga Y, Oguni T, Tanaka H, et al. Comparison of bioelectrical impedance analysis and dual energy X-ray absorptiometry for assessment of body composition in children. Pediatr Int. 1999;41(2):121–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roslyn C. Tarrant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrant, R.C., Queally, J.M., Moore, D.P. et al. Prevalence and impact of low body mass index on outcomes in patients with adolescent idiopathic scoliosis: a systematic review. Eur J Clin Nutr 72, 1463–1484 (2018). https://doi.org/10.1038/s41430-018-0095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0095-0

This article is cited by

Search

Quick links