Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aged hematopoietic stem cells entrap regulatory T cells to create a prosurvival microenvironment

Abstract

Although DNA mutation drives stem cell aging, how mutation-accumulated stem cells obtain clonal advantage during aging remains poorly understood. Here, using a mouse model of irradiation-induced premature aging and middle-aged mice, we show that DNA mutation accumulation in hematopoietic stem cells (HSCs) during aging upregulates their surface expression of major histocompatibility complex class II (MHCII). MHCII upregulation increases the chance for recognition by bone marrow (BM)-resident regulatory T cells (Tregs), resulting in their clonal expansion and accumulation in the HSC niche. On the basis of the establishment of connexin 43 (Cx43)-mediated gap junctions, BM Tregs transfer cyclic adenosine monophosphate (cAMP) to aged HSCs to diminish apoptotic priming and promote their survival via activation of protein kinase A (PKA) signaling. Importantly, targeting the HSC–Treg interaction or depleting Tregs effectively prevents the premature/physiological aging of HSCs. These findings show that aged HSCs use an active self-protective mechanism by entrapping local Tregs to construct a prosurvival niche and obtain a clonal advantage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Transcriptome, TCR-seq, and WES datasets generated in this study are available in the GEO database (GSE211007, GSE211136, GSE211203, GSE211205, GSE211206) and in the Sequence Read Archive (PRJNA866671, PRJNA866602, PRJNA866684). Published datasets (GSE156807, GSE20366, GSE69408, GSE104379, GSE175604) were reanalyzed in this paper with the authors’ permission.

References

  1. Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, et al. An aged immune system drives senescence and ageing of solid organs. Nature.2021;594:100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bogeska R, Mikecin A-M, Kaschutnig P, Fawaz M, Büchler-Schäff M, Le D, et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell. 2022;29:1273–84.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeon OH, Mehdipour M, Gil T-H, Kang M, Aguirre NW, Robinson ZR, et al. Systemic induction of senescence in young mice after single heterochronic blood exchange. Nat Metab. 2022;4:995–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kovtonyuk LV, Caiado F, Garcia-Martin S, Manz E-M, Helbling P, Takizawa H, et al. IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood. 2022;139:44–58.

    Article  CAS  PubMed  Google Scholar 

  5. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature. 2021;592:695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604:517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brengdahl MI, Kimber CM, Elias P, Thompson J, Friberg U. Deleterious mutations show increasing negative effects with age in Drosophila melanogaster. BMC Biol. 2020;18:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garaycoechea JI, Crossan GP, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol. 2020;22:7–17.

    Article  CAS  PubMed  Google Scholar 

  10. Ya-Hsuan H, Simón M-F. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica. 2020;105:38–46.

    Article  Google Scholar 

  11. Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to Tango: dialog between immunity and stem cells in health and disease. Cell. 2018;175:908–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frisch BJ, Hoffman CM, Latchney SE, LaMere MW, Myers J, Ashton J, et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight. 2019;5:e124213.

    Article  PubMed  Google Scholar 

  15. Pioli PD, Casero D, Montecino-Rodriguez E, Morrison SL, Dorshkind K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity. 2019;51:351–66.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riether C. Regulation of hematopoietic and leukemia stem cells by regulatory T cells. Front Immunol. 2022;13:1049301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, et al. CD150high bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22:445–53.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuichi H, Miwako K, Simon CR, Joji F. CD150high CD4 T cells and CD150high regulatory T cells regulate hematopoietic stem cell quiescence via CD73. Haematologica. 2019;104:1136–42.

    Article  Google Scholar 

  19. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.

    Article  CAS  PubMed  Google Scholar 

  21. Kolodin D, van Panhuys N, Li C, Magnuson Angela M, Cipolletta D, Miller Christine M, et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 2015;21:543–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camacho V, Matkins VR, Patel SB, Lever JM, Yang Z, Ying L, et al. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight. 2020;5:e135681.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilkinson AC, Ishida R, Nakauchi H, Yamazaki S. Long-term ex vivo expansion of mouse hematopoietic stem cells. Nat Protoc. 2020;15:628–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutierrez-Martinez P, Hogdal L, Nagai M, Kruta M, Singh R, Sarosiek K, et al. Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol. 2018;20:413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang J, Wang Y, Shao L, Laberge R-M, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22:78–83.

    Article  CAS  PubMed  Google Scholar 

  26. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun X, Cao B, Naval-Sanchez M, Pham T, Sun YBY, Williams B, et al. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat Commun. 2021;12:2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flohr Svendsen A, Yang D, Kim K, Lazare S, Skinder N, Zwart E, et al. A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood. 2021;138:439–51.

    Article  CAS  PubMed  Google Scholar 

  29. Crippa S, Bernardo ME. Mesenchymal stromal cells: role in the BM niche and in the support of hematopoietic stem cell transplantation. HemaSphere. 2018;2:e151.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A, Fink P, et al. A major role for Bim in regulatory T Cell homeostasis. J Immunol. 2011;186:156–63.

    Article  CAS  PubMed  Google Scholar 

  31. Reiko I, Laura PH, Susan MG, Jie L, Andrew S, Junko K, et al. Late effects of exposure to ionizing radiation and age on human thymus morphology and function. Radiat Res. 2017;187:589–98.

    Article  Google Scholar 

  32. Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc Natl Acad Sci USA. 2010;107:5919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muñoz-Rojas AR, Mathis D. Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol. 2021;21:597–611.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hernández-Malmierca P, Vonficht D, Schnell A, Uckelmann HJ, Bollhagen A, Mahmoud MAA, et al. Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell. 2022;29:760–75.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hinterbrandner M, Rubino V, Stoll C, Forster S, Schnüriger N, Radpour R, et al. Tnfrsf4-expressing regulatory T cells promote immune escape of chronic myeloid leukemia stem cells. JCI Insight. 2021;6:e151797.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8:191–7.

    Article  CAS  PubMed  Google Scholar 

  37. Nyström SN, Bourges D, Garry S, Ross EM, van Driel IR, Gleeson PA. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4 + T-cell responses. Eur J Immunol. 2014;44:3621–31.

    Article  PubMed  Google Scholar 

  38. Radpour R, Riether C, Simillion C, Höpner S, Bruggmann R, Ochsenbein AF. CD8 + T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia. 2019;33:2379–92.

    Article  CAS  PubMed  Google Scholar 

  39. Schürch Christian M, Riether C, Ochsenbein, Adrian F. Cytotoxic CD8 + T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell. 2014;14:460–72.

    Article  PubMed  Google Scholar 

  40. Riether C, Gschwend T, Huguenin AL, Schürch CM, Ochsenbein AF. Blocking programmed cell death 1 in combination with adoptive cytotoxic T-cell transfer eradicates chronic myelogenous leukemia stem cells. Leukemia. 2015;29:1781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schürch C, Riether C, Amrein MA, Ochsenbein AF. Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-γ. J Exp Med. 2013;210:605–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beyaz S, Chung C, Mou H, Bauer-Rowe KE, Xifaras ME, Ergin I, et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell. 2021;28:1922–35.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Williams MJ, Park HJ, Bastos HP, Wang X, Prins D, et al. STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood. 2022;140:1592–606.

    Article  CAS  PubMed  Google Scholar 

  44. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39:154–73.

    Article  CAS  PubMed  Google Scholar 

  45. He K, Wan T, Wang D, Hu J, Zhou T, Tao W, et al. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell. 2023;186:3033–48.e20.

  46. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  PubMed  Google Scholar 

  47. Nowak J, Wozniak J, Mendek-Czajkowska E, Dlugokecka A, Mika-Witkowska R, Rogatko-Koros M, et al. Potential link between MHC-self-peptide presentation and hematopoiesis; the analysis of HLA-DR expression in CD34-positive cells and self-peptide presentation repertoires of MHC molecules associated with paroxysmal nocturnal hemoglobinuria. Cell Biochem Biophys. 2013;65:321–33.

    Article  CAS  PubMed  Google Scholar 

  48. Mendoza-Naranjo A, Bouma G, Pereda C, Ramírez M, Webb KF, Tittarelli A, et al. Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J Immunol. 2011;187:3121.

    Article  CAS  PubMed  Google Scholar 

  49. Singh AK, Cancelas JA. Gap junctions in the bone marrow lympho-hematopoietic stem cell niche, leukemia progression, and chemoresistance. Int J Mol Sci. 2020;21:796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klein M, Bopp T. Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front Immunol. 2016;7:315.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Negrotto S, Pacienza N, D’Atri LP, Pozner RG, Malaver E, Torres O, et al. Activation of cyclic AMP pathway prevents CD34+ cell apoptosis. Exp Hematol. 2006;34:1420–8.

    Article  CAS  PubMed  Google Scholar 

  52. Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS ONE. 2016;11:e0158369.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Luo Y, Xu C, Wang B, Niu Q, Su X, Bai Y, et al. Single-cell transcriptomic analysis reveals disparate effector differentiation pathways in human Treg compartment. Nat. Commun. 2021;12:3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adelman ER, Huang H-T, Roisman A, Olsson A, Colaprico A, Qin T, et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 2019;9:1080–101.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tirosh A, Tuncman G, Calay ES, Rathaus M, Ron I, Tirosh A, et al. Intercellular transmission of hepatic ER stress in obesity disrupts systemic metabolism. Cell Metab. 2021;33:319–33.e6.

    Article  CAS  PubMed  Google Scholar 

  56. Lumniczky K, Candéias SM, Gaipl US, Frey B. Editorial: Radiation and thE Immune System: Current Knowledge and Future Perspectives. Front Immunol. 2018;8:1933.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Persa E, Balogh A, Sáfrány G, Lumniczky K. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett. 2015;368:252–61.

    Article  CAS  PubMed  Google Scholar 

  58. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell. 2018;175:1307–20.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, et al. Quiescent tissue stem cells evade immune surveillance. Immunity. 2018;48:271–85.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C, et al. Mice lacking all conventional MHC class II genes. Proc Natl Acad Sci USA. 1999;96:10338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuribayashi W, Oshima M, Itokawa N, Koide S, Nakajima-Takagi Y, Yamashita M, et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J Exp Med. 2020;218:e20192283.

    Article  PubMed Central  Google Scholar 

  62. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci USA. 2011;108:1609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu C, Liao W, Chen J, Yu K, Wu Y, Zhang S, et al. Cholesterol confers ferroptosis resistance onto myeloid-biased hematopoietic stem cells and prevents irradiation-induced myelosuppression. Redox Biol. 2023;62:102661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pietras Eric M, Reynaud D, Kang Y-A, Carlin D, Calero-Nieto Fernando J, Leavitt, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He H, Xu P, Zhang X, Liao M, Dong Q, Cong T, et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood. 2020;136:183–98.

    Article  PubMed  Google Scholar 

  66. Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai C-Y, Nakauchi Y, et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell. 2018;22:600–7.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bayik D, Lathia JD. Cancer stem cell–immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021;21:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  69. Riether C, Schürch CM, Ochsenbein AF. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22:187–98.

    Article  CAS  PubMed  Google Scholar 

  70. Visconte V, Maciejewski JP. Clonal dynamics of hematopoietic stem cell compartment in aplastic anemia. Semin Hematol. 2022;59:47–53.

    Article  PubMed  Google Scholar 

  71. Chen J, Kao Y-R, Sun D, Todorova TI, Reynolds D, Narayanagari S-R, et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 2019;25:103–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Liting Wang for technical assistance with immunofluorescence. This study was supported by the Key Program of the National Natural Science Foundation of China (No. 81930090), the National Science Foundation for Distinguished Young Scholars of China (No. 81725019), and the National Natural Science Foundation of China (Nos. 82273571, 32171104, U22A20279, 81874256, and 81872556), Chongqing Natural Science Foundation (2023NSCQ-JQX0076).

Author information

Authors and Affiliations

Authors

Contributions

WL, CL, and KY designed and performed experiments, analyzed data, and wrote the manuscript. JC, YW, SZ, and KY contributed to flow cytometric analysis and animal experiments. LW and LR contributed to mouse model creation and animal experiments. MC and FC contributed to the ex vivo experiments and data analysis. YX and SW contributed to bioinformatics analysis and assisted with writing the manuscript. FW, QZ, and JZ contributed to the experimental design and data interpretation. LY, CD, and JW conceived and supervised the study, interpreted the data, and revised the manuscript.

Corresponding authors

Correspondence to Lilin Ye, Changhong Du or Junping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Liu, C., Yang, K. et al. Aged hematopoietic stem cells entrap regulatory T cells to create a prosurvival microenvironment. Cell Mol Immunol 20, 1216–1231 (2023). https://doi.org/10.1038/s41423-023-01072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01072-3

Keywords

This article is cited by

Search

Quick links