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The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived
extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related
diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier
penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs
(lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity
through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications
enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential.
This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves
into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for
osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by
MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
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FACTS

● MSC-EVs-loaded non-coding RNAs can regulate bone disease
progression.

● MSC-EVs can be used as drug carriers for bone diseases.
● Targeting of MSC-EVs to bone tissue can be increased by

engineered modifications.

OPEN QUESTIONS

● How to increase the yield and purity of EVs secreted by MSC?
● Which engineering modification techniques can further

improve bone targeting in MSC-EVs?
● How the drug loading efficiency of MSC-EVs can be further

improved?

INTRODUCTION
Bones, integral in maintaining body posture, serve not only to
protect internal organs and support hematopoiesis but also
actively regulate the body’s mineral balance, calcium and
phosphorus metabolism, and maintain normal physiological
functions [1, 2]. However, the aging process disrupts this delicate
balance, leading to the dysregulation of bone metabolism and the
development of bone diseases such as osteoporosis, OA, and
bone tumors [3]. Conditions like osteosarcoma, malignant tumors

with bone metastases, and other imbalances in bone metabolism
can result in severe pain and a poor prognosis for patients [4].
Furthermore, orthopedic diseases, including OA, bone injuries, and
degenerative disc disease, pose threats to health and reduce the
quality of life for millions globally [5]. Current clinical treatments
for orthopedic conditions include bed rest, non-steroidal anti-
inflammatory drugs (NSAIDs), analgesics, lumbar discectomy, and
interbody fusion [6], provide only temporary relief of symptoms
and lack precision in targeting the pathogenesis of bone disease
[7]. Hence, there is an urgent need to explore the mechanisms of
bone diseases and develop safe and effective biomaterials/agents
to improve the prognosis of patients with orthopedic diseases.
MSC are known for their pluripotent nature and the ability for

self-renewal and multi-lineage differentiation [8], have been
utilized in the past, either alone or in combination with
biomaterials and growth factors, for treating musculoskeletal
disorders [9]. However, the potential risks of immune rejection,
tumorigenicity, and induction of tumor resistance associated with
MSC transplantation have limited their use in orthopedic disease
treatment [10]. Recent studies have revealed that the positive
effects of MSC on bone disease may be mediated by paracrine
mechanisms, particularly MSC-EVs [11, 12]. EVs represent hetero-
geneous membrane-bound vesicles of lipid bilayer, released into
the microenvironment by all cells [13]. The researchers classified
EVs into exosomes (30–150 nm), microvesicles (200–1000 nm) and
apoptotic vesicles (800–5000 nm) based on the diameter of the
EVs [14], the absence of a uniform nomenclature arises from
overlapping characteristics in size, density, contents, and surface
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molecules among vesicles subtypes [15]. Consequently, for this
study, the collective term “EVs” encompasses exosomes, micro-
vesicles, and apoptotic vesicles. EVs serve as carriers for diverse
cargo, including protein molecules, nucleic acids, pro-
inflammatory factors, cytokines, and transcription factor receptors,
enabling their participation in intercellular signaling through
receptor-ligand interactions [16]. Furthermore, the genetic mate-
rial within EVs, such as miRNAs, non-coding RNAs, and DNA,
contributes to their involvement in immune response, signal
transduction, and antigen presentation and influences cellular
physiology and pathology [17, 18]. Functionally mirroring their
parental cells, EVs play a crucial role in influencing disease
progression by mediating angiogenesis through cell-to-cell
communication and modulating immune responses [19].
Mounting evidence suggests the involvement of MSC-EVs in the

regulation of bone-related diseases, including OA, fracture
healing, degenerative bone diseases, and bone tumors, mediated
by paracrine mediators [9, 20, 21]. Leveraging their commendable
biocompatibility, tissue penetration, and pro-regenerative abilities
akin to parental cells, MSC-EVs are increasingly harnessed as nano
drug delivery carriers, finding applications in the treatment of
diverse diseases such as oncology, neurodegenerative disorders,
and immune disorders [22, 23]. Furthermore, the synergy of MSC-
EVs with engineering techniques enhances the precision targeting
of drugs for specific diseases [24]. This review provides a
comprehensive summary of the regulatory role of MSC-EVs in
the progression of orthopedic diseases. It explores their promising
clinical application as nanocarriers for the treatment of orthopedic
diseases, with the optimistic anticipation that cell-free therapies
will pave the way for innovative perspectives in orthopedic
disease treatment.

REGULATION OF OSTEOBLAST BIOLOGICAL BEHAVIOR BY
MSC-EVS
Operating at the nanoscale, these EVs are ubiquitously secreted by
nearly all cell’s physiological or pathological conditions, utilizing
endocytosis and biosynthetic pathways [25]. Activation of the
endocytosis pathway, triggered by external or internal signals
from the local environment, initiates membrane invagination,
forming early endosomes [26, 27]. Guided by various cellular
signaling pathways, these early endosomes transform into late
endosomes. The subsequent fusion of multicellular bodies derived
from late endosomes with the cell membrane culminates in the
secretion of EVs [25, 28]. EVs, acting as messengers, transport
nucleic acids, proteins, and lipids in a paracrine or endocrine
manner, thereby regulating the biological functions of recipient
cells [29]. Within the bone metabolism microenvironment, MSC-
EVs emerge as pivotal players in the regulation of bone-related
diseases, because MSC-EVs affect the progression of bone diseases
by regulating signaling pathways, bone metabolism, inflammatory
responses, angiogenesis, promoting osteoblast proliferation, and
inhibiting ECM degradation (Fig. 1).

Regulating signaling pathway
MSC release EVs that exert a significant influence on the biological
behavior of bone cells, thereby impacting the progression of bone
diseases. MSC-EVs, enriched with various substances, including
miRNAs and proteins, predominantly govern their regulatory
effects on osteoblasts through the genetic material that they carry
[30, 31]. Notably, specific miRNAs such as miRNA-935, miRNA-361-
5p, miR-126, and lncRNA-H19 have demonstrated the ability to
mitigate osteoporosis, OA, and bone damage by fostering
osteoblast proliferation [32–35]. These signaling molecules (e.g.,
miRNAs), when introduced into recipient cells, profoundly affect
bone formation and the advancement of skeletal diseases.
Importantly, variations in genetic information lead to differential
expression levels of signaling molecules, such as miRNAs, in

osteoblasts [36]. Differences in the expression of miRNAs are
evident in MSC-EVs promoting osteogenic differentiation. For
instance, miR-135b, miR-203, miR-219, miR-299-5p, and miR-302b
are significantly upregulated, while miR-155, miR-885-5p, miR-
181a, and miR-320c are downregulated during osteogenic
differentiation [37]. Moreover, the same miRNA may exhibit
varying expression levels in different bone diseases. Therefore,
when investigating bone diseases, it is crucial to consider the
different effects of altered expression of signaling molecules from
various aspects.
Cell growth regulation involves multiple growth factor recep-

tors, where intracellular kinases activate or phosphorylate these
receptors’ structural domains. This activation triggers downstream
pro-growth signals through pathways like AKT (protein kinase B),
protein kinase C (PKC), and MAP kinase, influencing osteoblast
proliferation and disease progression [38, 39]. For instance, MSC-
EVs have been shown to alleviate osteoporosis by promoting
osteoblast proliferation through the mitogen-activated protein
kinase (MAPK) pathway [38]. Additionally, MSC-EVs contribute to
spinal cord injury alleviation by inhibiting TLR4/MyD88/NF-κB
signaling pathways [40]. The presence of lncRNA XIST in MSC-EVs
promotes osteosarcoma growth and metastasis through the miR-
655/ACLY signaling pathway [41]. These findings underscore the
pivotal role of MSC-EVs in regulating bone diseases [42], and
future studies investigating the effects of remaining miRNAs/
lncRNAs and other signaling pathways on bone diseases hold
promise for advancing the utilization of MSC-EVs in clinical
application.

Promoting osteoblast proliferation
As previously mentioned, MSC-EVs harbor a diverse array of
signaling molecules, including proteins, lipids, and miRNAs,
capable of influencing osteoblast activity and impacting bone
formation. Notably, other signaling molecules may also contribute
to the regulation of osteoblast proliferation and differentiation. Li
et al. [43] observed that hypoxia inducible factor (HIF)-1α in MSC-
EVs stimulated the expression of relevant osteogenic genes,
rescuing bone ischemic necrosis by mitigating early steroid
induction. Additionally, tsRNA-10277-containing MSC-EVs were
found to regulate the lipogenic and osteogenic potential of bone
marrow MSC (BM-MSC) [44].
Numerous cell biology studies have elucidated the mechan-

isms through which BM-MSC or MSC-EVs regulate osteoblast
proliferation and differentiation, encompassing the following
aspects: (1) EVs can induce the differentiation of BM-MSC into
osteoblasts by regulating growth factors, osteogenic proteins,
and transcription growth factor-β1 (TGF-β1) [45]. Furthermore,
EVs can regulate protein expression through miRNA to facilitate
the differentiation of BM-MSC into osteoblasts [46]. (2) MSC-EVs
can directly enhance the proliferative capacity of osteoblasts
through miRNAs or signaling pathways, thereby alleviating bone
disease progression. For example, miR-935 carried by MSC-EVs
supports the proliferation and differentiation of osteoblasts by
targeting STAT1 [35]. Moreover, miR-1260b derived from MSC-EVs
inhibits osteoclast activity, regulating the dynamic balance of
osteoblasts through the Wnt5a-mediated RANKL pathway [47]. (3)
Osteoblast proliferation and bone formation may be associated
with enhanced vascularization, as miR-29a enriched in EVs
secreted by BM-MSC promotes angiogenesis by being taken up
by human umbilical vein endothelial cells [48]. (4) As mediators of
cellular communication, MSC-EVs regulate immune responses
and anti-apoptosis through cellular interactions, ultimately
favoring osteoblast proliferation and bone formation [49]. For
instance, MSC-EVs can alter macrophage polarization phenotypes
by activating NF-κB signaling, promoting osteoblast differentia-
tion [50]. Additionally, osteoblast-derived EVs inhibit osteoclast
differentiation via the miR-503-3p/Hpse axis, thereby promoting
bone formation [51].
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The proliferation and differentiation of osteoblasts are thus
recognized as dynamic processes involving multiple biological
behaviors, where angiogenesis, immune cell phenotype, and bone
metabolism play crucial roles.

Regulating angiogenesis
Angiogenesis plays a critical role in the evolution of musculoske-
letal structures and the maintenance of normal physiological
function. This process accelerates the delivery of nutrients,

Fig. 1 MSC-EVs regulate bone-related disease progression through various mechanisms. These include the regulation of signaling
pathways, promotion of osteoblast proliferation, modulation of the extracellular matrix, facilitation of angiogenesis, influence on bone
metabolism, and modulation of inflammatory responses.

J. Tang et al.

3

Cell Death Discovery          (2024) 10:212 



oxygen, and cells, thereby upholding the structural and functional
integrity of joints and soft tissues. Moreover, angiogenesis
facilitates the differentiation and mineralization of cartilage,
promoting the establishment of bone homeostasis and bone
healing [52]. Recent research suggests that MSC play a role in the
in vivo generation of new blood vessels, attributed to their ability
to secrete angiogenic factors and proteases, thereby promoting
angiogenesis in disease-related signaling [53]. Critical players in
this process include matrix metalloproteinase 2 (MMP-2), trans-
forming growth factor-β (TGF-β), interleukin-6 (IL-6), and vascular
endothelial growth factor (VEGF) are crucial [54, 55].
Interestingly, mounting evidence suggests that MSC-EVs

contribute to the modulation of bone diseases through the
remodeling of angiogenesis. Similar to their parental cells, MSC-
EVs regulate bone formation via angiogenesis, involving multi-
ple soluble mediators [56]. For instance, MSC-EVs promote
angiogenesis through the VEGF and Hippo signaling pathways,
enhancing tendon-bone healing [57]. Additionally, lncRNA-H19
in MSC-EVs supports bone formation by activating the ngpt1/
Tie2-NO signaling pathway to promote angiogenesis [32].
Notably, VEGF emerges as a key mediator of angiogenesis,
with its activity potentially linked to YAP/TAZ signaling and
Hippo pathway activation [58]. However, the detailed mechan-
isms through which MSC-EVs ameliorate bone pathogenesis by
promoting angiogenesis warrant further investigation. It would
be interesting to explore whether MSC-EVs mediate their effects
through specific cytokines (e.g., TGF-β, IL-6). Studies have
shown that MSC-EVs promote angiogenesis through MMP-2,
and MSC-EVs-derived TGF-β attenuates OA by regulating
vascular activity [56, 59]. These findings confirm the potential
clinical application of MSC-EVs in alleviating osteoarthropathy
by promoting angiogenesis.

Inhibiting ECM degradation
Collagen, an essential component of tendon and bone, plays an
indispensable role in maintaining the normal physiological
function of the bone and joint [60]. Inflammatory cytokines,
especially interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α), stimulate the production of MMPs, leading to the
degradation of all components of the extracellular matrix (ECM).
This process results in permanent damage to cartilage, tendons,
and bones, contributing to the development of diseases such as
OA and RA [61]. Previous studies have established that
collagenases, especially MMP-1 and MMP-13, play a pivotal
role in inducing OA and RA by accelerating collagen degrada-
tion [62]. Interestingly, researchers have identified a unique
ability of MSC-EVs to inhibit matrix degradation during arthritis
progression. MSC-EVs induce the expression of type II collagen
and aggregated glycans, expediting cartilage remodeling while
simultaneously limiting matrix and collagen catabolism by
inhibiting MMP-13 expression [63].
Furthermore, MSC-EVs may suppress osteoarticular inflamma-

tion by downregulating the expression of IL-1β, MMP-1, and MMP-
13 [64]. Given that the regulation of ECM degradation by MSC-EVs
is a multifactorial and correlated process, the activation of specific
signaling pathways is equally noteworthy. By inhibiting ECM
degradation along with the production of inflammatory factors,
MSC-EVs present the possibility of inflammatory factors counter-
acting their matrix degradation inhibition by promoting ECM
degradation [65]. For instance, MSC-EVs inhibit matrix degradation
and the production of inflammatory factors through the miRNA-
130b-3p-mediated LRP12/AKT/β-catenin axis, thereby alleviating
OA progression [65]. Similarly, MSC-EVs rescue disc degeneration
by promoting the proliferation of degenerating nucleus pulposus
cells and synthesizing the ECM synthesis through the miR-129-5p/
SOX4/Wnt/β-catenin axis [66]. Consequently, MSC-EVs hold
significant promise in modulating ECM synthesis to reverse
osteoarthropathy.

Regulating bone metabolism
Bone metabolism is intricately regulated by the balance between
osteoblast-mediated bone formation and osteoclast-mediated
bone resorption [67]. Imbalances, such as increased osteoclast
activity and decreased osteoblast activity, can lead to delayed
fracture healing or increased bone degeneration. The complex
biological process of bone formation involves BM-MSC differentiat-
ing directly into osteoblasts through various biological factors.
Notably, osteoblast-specific transcription factors, including runt-
related transcription factor 2 (RUNX2) and osterix, play essential
roles in osteoblast differentiation [68, 69]. Maintaining the balance
of bone metabolism (osteoclast resorption and osteoblast remo-
deling) is vital for preventing the development of bone diseases.
Increased osteolysis and bone resorption significantly impede
bone growth into grafted tendons, affecting ECM synthesis and
bone remodeling, ultimately leading to delayed early fracture
healing [70]. Osteoclasts are the primary cell type responsible for
the destruction and resorption of bone tissue in vivo, and
inhibiting osteolysis while promoting osteogenesis and maintain-
ing bone metabolism homeostasis are two central factors in
promoting fracture healing and delaying joint degeneration [71].
Numerous preclinical and clinical studies have validated the

potential of MSC-EVs in supporting bone healing by promoting
osteogenic differentiation and inhibiting osteolysis. Feng et al. [72]
proposed that miR-6924-5p, enriched in MSC-EVs, effectively
inhibits tunnel osteolysis and enhances the biomechanical
strength of tendon-bone healing by targeting two osteoclastic
regulators, OCSTAMP and C-X-C motif chemokine ligand 12
(CXCL12). Simultaneously, MSC-EVs accelerated tendon-bone
healing by delivering bone morphogenetic protein-2 (BMP-2),
promoting the formation of bone and fibrocartilage tissues, as
well as enhancing the stiffness and ultimate load strength of the
tendon interface via the Smad/RUNX2 pathway [69]. Another
intriguing study demonstrated that MSC-EVs loaded with recom-
binant C-Type lectin domain family 11, member A (CLEC11A)
facilitate the transition of BM-MSC from lipogenic to osteogenic
differentiation and inhibit osteoclast activity, ultimately alleviating
osteoporosis [73]. Collectively, this evidence confirms that MSC-
EVs can regulate bone metabolism to support fracture healing and
alleviate osteoporosis. However, whether bone metabolism
synergizes with biological behaviors such as angiogenesis and
ECM degradation to improve the progression of related bone
diseases is essential, as it may further explore the potential of
MSC-EVs for clinical applications in orthopedic diseases [74].

Regulating inflammatory response
Inflammatory responses are widely involved in the regulation of
physiological and pathological processes in musculoskeletal
disorders [75]. In the physiological state, inflammation is essential
for tissue repair and regeneration, such as in fracture repair, as
well as an indicator of bone and joint infection [75]. However,
numerous studies have affirmed that inhibiting inflammation can
alleviate chronic inflammation in degenerative musculoskeletal
diseases such as OA and disc degeneration [76]. Notably, damage-
associated molecular patterns (DAMP) activated by degenerating
or stressed cells mediate persistent noninfectious inflammatory
responses. The activation of the inflammatory response triggers
the release of pro-inflammatory cytokines/chemokines from
innate immune cells [77]. Mechanistically, elevated DAMP levels
activate inflammatory vesicles, inducing caspase-1 activation and
ultimately promoting the release of IL-1β and IL-18 [78].
Furthermore, active inflammatory diseases, including RA, may
result from differences in the distribution of functional pro-
inflammatory helper T cells (Th17) and anti-inflammatory regula-
tory T cells (Tregs) [79]. Therefore, strategies involving the
elimination of DAMP-induced inflammatory responses and the
modulation of immune responses hold potential for the clinical
management of inflammatory diseases.
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Studies have demonstrated that MSC can inhibit the inflamma-
tory response by promoting anti-inflammatory processes during
tissue repair, thereby creating an appropriate microenvironment for
cartilage and musculoskeletal regeneration [80]. For instance, MSC
induce the polarization of anti-inflammatory macrophages (M2-
macrophages) and reduce levels of IL-1, IL-6, IL-8, IL-17, TNF-α, and
IFN-γ in inflamed tissues [80–82]. Similar to their parental cells,
MSC-EVs also exhibit promising potential in modulating inflamma-
tory and immune responses. MSC-EVs ameliorate osteoporosis by
inhibiting NOD-like receptor thermal protein domain associated
protein 3 (NLRP3) inflammasome activation, as the negative
regulation of NLRP3 inflammasome activation inhibits IL-1β and
IL-18 secretion in osteoclasts, promoting recovery from bone loss
[83, 84]. Additionally, macrophages have garnered attention for
their potent immunomodulatory functions. MSC-EVs have been
shown to reduce the inflammatory response of local tissues by
polarizing macrophages from a pro-inflammatory M1 phenotype to
an anti-inflammatory M2 phenotype, thereby promoting tendon-
bone healing [57]. This may attributed to the M2 macrophage
polarization, which decreases the expression levels of pro-
inflammatory cytokines (IL-1β and IL-6) while stimulating the
expression of anti-inflammatory cytokines (IL-10 and TGF-β) [85].
Given the immunomodulatory function of macrophage polariza-
tion, MSC-EVs may also suppress inflammation by inhibiting M1
macrophage polarization and promoting M2 macrophage infiltra-
tion [86]. Notably, specific signaling pathways may be associated
with immune regulation in MSC-EVs. For instance, miR-23a-3p in
BM-MSC-EVs supports tendon-bone healing by targeting and
inhibiting IRF1 and NF-κB pathways in macrophages, promoting
M2 macrophage polarization and suppressing inflammatory
responses at the tendon-bone interface [87]. Furthermore, NF-κB
is thought to be associated with GSDMD-mediated macrophage
pyroptosis and inflammatory mediator release; however, the means
by which MSC-EVs are involved in macrophage pyroptosis-based
immune regulation are not yet known [88, 89]. Nevertheless, NF-κB
may be a potential target for tendon-bone healing, and the
detailed mechanisms by which MSC-EVs and NF-κB are involved in
immune and inflammatory regulation must be further explored.

POTENTIAL APPLICATION OF MSC-EVS AS DRUG CARRIERS
Advantages of MSC-EVs as drug carriers
In comparison to synthetic biomaterials, EVs secreted by cells offer
enhanced biocompatibility, lower immunogenicity, and greater
target specificity [90]. The membranes of EVs are enriched with
sphingolipids, signaling factors, and adhesion factors, facilitating their
recognition and binding to target cells [91]. With a lipid molecular
layer structure similar to cell membranes, EVs possess a robust ability
to penetrate biological barriers (e.g., blood-brain barrier) and reach
deeper tissues [92]. Additionally, the excellent tolerance of EVs allows
them to evade immune phagocytosis, ensuring prolonged circulation
[93]. These characteristics position EVs as effective drug carriers for
delivering therapeutic agents to deep tissues.
In contrast to generic EVs, MSC-secreted EVs offer distinct

advantages, rendering them exceptional drug carriers. MSC exhibit
a heightened capacity to secrete EVs compared to other cells [94].
Concurrently, MSC-EVs demonstrate strong targeting abilities, and
their low immunogenicity enables them to evade activating immune
responses, resulting in a stronger circulating half-life [95]. Further-
more, MSC-EVs display effective lesion permeability and retention,
allowing them to accumulate at the disease site [96, 97]. These
unique attributes position MSC-EVs as highly valuable for clinical
applications and ideal drug carriers for treating various diseases,
including osteoarthropathies, neurodegeneration, and tumors.

The application of MSC-EVs as drug carriers
Currently, various techniques are available for loading exogenous
drugs into EVs and delivering them to specific lesions, including

incubation, electroporation, ultrasonication, extrusion, and freeze-
thaw cycles [98]. Among these methods, incubation is commonly
used due to its operational simplicity, but its drug-loading
efficiency limits further development [99]. Although electropora-
tion exhibits higher drug loading efficiency than incubation, the
electric charge may induce the denaturation of EV surface proteins
and structural disruption [100]. Both sonication and extrusion
methods result in higher drug loading efficiency than incubation.
However, sonication affects EVs’ physicochemical properties and
triggers protein aggregation, while inappropriate mechanical
compression (extrusion) disrupts EVs’ membrane structural
integrity [101, 102]. Freeze-thaw cycling has the potential for
large-scale applications, but rapid and repeated cycles alter the
physicochemical properties of surface proteins and remain less
efficient than sonication for drug encapsulation [103, 104]. Overall,
each drug loading method has its advantages and disadvantages,
with electroporation being the most commonly used method for
EVs, considering factors like convenience and cost [105].
Several reports confirm the therapeutic potential of different

drug-loading methods for MSC-EVs in skeletal diseases. For
instance, BM-MSC-EVs can be loaded with miRNA-542-3p by
electroporation [106], and Li et al. [107] used incubation to load
exogenous lncRNA CAHM into MSC-EVs, modulating macrophage
polarization to ameliorate disc degeneration. Additionally, exo-
genous drugs were loaded onto MSC-EVs by extrusion and
sonication to alleviate OA progression [108, 109]. These cases
demonstrate the promising clinical applications of MSC-EVs as
drug carriers.

MSC-EVS TARGETED THERAPEUTIC POTENTIAL
Notably, while the drug-loading efficiency of EVs can be improved
in multiple ways, considering the prolonged retention of EVs in
the blood circulation or tissues, improving the targeting of EVs
would be beneficial to increase the efficiency of drug therapy.
Current research focuses on improving EV targeting through
engineering modifications.

Natural bone targeting capacity of MSC-EVs
Natural EVs released from cells inherently possess the ability to
deliver their contents to host cells. Membrane surface proteins of
EVs, such as tetraspanning proteins (CD9, CD63, and CD81), latex
adhesion proteins (LA), Lamp-2b, and heat shock proteins (HSP),
contribute to the targeting of EVs to host cells and mediate their
entry into the recipient cells [110, 111]. Theoretically, EVs can be
specifically internalized in a cell type-specific manner, depending
on the identification of ligand proteins on the EV surface by the
cell or tissue [112]. For instance, the interaction of CXC chemokine
receptors (CXCR4) with stromal cell-derived factor 1 (SDF-1) can
facilitate the targeted metastasis of MSC-EVs to osteosarcoma sites
[113]. Furthermore, EVs secreted by different cells may contain
signaling molecules that act as ligands for other cells, and these
receptor-ligand interactions facilitate the enrichment of EVs in
specific cells or tissues [114]. Zhang et al. [115] demonstrated that
EVs derived from BM-MSC could target miR-206 for translocation
into osteosarcoma tissues and regulate tumor growth. Induced by
chemokines, MSC-EVs may accumulate in specific tissues through
vascular leakage, revealing the homing effect of MSC [116]. The
promising tissue-targeting properties of MSC-EVs hold much
promise for the study and treatment of bone diseases, although
more research is still worth exploring.

Engineering modifications of MSC-EVs to enhance bone
targeting capability
Considering the inefficiency of the natural targeting of MSC-EVs,
enhancing the bone targeting of MSC-EVs through engineering
modifications is a potential option to improve the efficiency of
bone disease treatment.
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Direct modification of MSC-EVs. Click chemistry, membrane
postinsertion, hydrophobic insertion, and receptor-ligand binding
are typical approaches for direct modification of bone-targeted
MSC-EVs.
Click chemistry involves coupling ligands to the outer surface of

EVs, which is achieved by direct modification of EVs [117]. For
example, EVs binding to alendronate can generate Ale-EVs
through “click chemistry,” facilitating EV targeting to the bone
via alendronate/hydroxyapatite binding and ultimately alleviating
osteoporosis [118]. Copper-catalyzed azide-alkyne cycloaddition
reactions (click chemistry) were utilized by Smyth et al. for
bioconjugation of specific molecules to the surface of EVs,
confirming its potential for improving bone-targeting ability [119].
Membrane postinsertion operation, due to its simplicity and

flexibility, is considered an attractive EV modification strategy. This
approach achieves covalent attachment of the target ligand to
polyethylene glycol-lipid micelles, which are then co-incubated
with selected liposomes before transferring to the liposome bilayer
[120]. Yan et al. [121] demonstrated that this modification,
involving folic acid (FA)-polyethylene glycol-cholesterol compound,
enhances bone-targeting of EVs encapsulating dexamethasone
sodium phosphate, contributing to RA amelioration. Incorporating
folic acid onto EVs via membrane postinsertion strategy improves
bone targeting and reduces synovial inflammation, showing good
biocompatibility and extended circulating half-life [122–124].
Hydrophobic interactions have been employed to modify the

surface of EVs through the insertion of hydrophobic diacyl lipids,
facilitating the modification of EVs with bone-targeted peptides
[125]. In this method, bone-targeting peptides are incubated with
EVs, and hydrophobic interactions are harnessed to craft EVs
capable of bone-targeting delivery. This approach involves
modifying EVs through hydrophobic interactions and loading
Shn3-expressing siRNAs into MSC-EVs by demonstrating the
inherent bone-targeting properties of MSC-EVs, thereby further
enhancing the therapeutic efficacy of osteoporosis treatment, as
well as promoting osteoclast differentiation and facilitating
angiogenesis [125, 126].
Currently, researchers employ receptor-ligand interactions to

affix natural receptors onto the surface of EVs, creating targeted
ligands [127]. Leveraging the selectivity of aptamers, various
techniques are employed to modify the EV surface, enhancing
bone targeting. Luo et al. [128] demonstrated that coupling of
bone marrow stromal cell-derived EVs with BM-MSC-specific
aptamers enables the targeted delivery of EVs to BM-MSC within
the bone marrow. This approach avoids immune clearance and
metabolism, thus offering potential options for treating osteo-
porosis and fractures. The glycoproteins present on EV membranes
make glycosylphosphatidylinositol (GPI) an anchoring structure for
functional ligands on the surface of EVs. The aptamer modification
using GPI protects EV surface proteins from proteolytic degrada-
tion by proteases, thereby improving the targeting ability of EVs
[129]. Furthermore, co-incubation of aldehyde-modified aptamers
with BM-MSC-EVs facilitates the synthesis of aptamer-
functionalized EVs, contributing to bone targeting and promoting
bone repair and regeneration [128, 130].

Indirect modification of MSC-EVs. Recognizing the analogous
properties of EVs to parental cells, a viable strategy for obtaining
targeted EVs involves the genetic engineering modification of
parental cells [131]. The modification of parental cells that
produce EVs, such as directing signaling peptides to the surface
of EVs, is achieved using plasmid vectors encoding target ligands
fused to transmembrane proteins [110]. Lamp-2b, serving as a
surface protein with a signal peptide for EVs, is often fused to
targeting proteins to present the protein as a targeting site, ligand,
or receptor on the EV surface. For instance, Liang et al. stably
transfected dendritic cells with the CAP-Green fluorescent protein
(GFP)-Lamp2b plasmid, obtaining EVs specifically targeted to

chondrocytes. These EVs delivered miRNA-140 to the deep
cartilaginous region by effectively targeting chondrocytes [132].
Similarly, chondrocyte-targeted EVs were engineered by geneti-
cally fusing a chondrocyte affinity peptide to the N-terminal end
of the EV surface protein Lamp2b, demonstrating favorable
osteoarticular targeting [133]. EVs obtained through genetic
engineering of parental cells not only retained their bone-
targeting properties but also exhibited increased stability. How-
ever, the degradation of peptides by endoplasmic proteases
within cells poses a significant challenge to the yield of targeted
peptide-functional EVs.
Indeed, specific metabolic reprogramming can enhance the

acquisition of targeted EVs. For instance, metabolic glycoengineer-
ing (MGE) facilitates biorthogonal copper-free click chemical
modification on the parental cell surface [134]. Dong et al. [135]
utilized MGE by culturing parental cells with tetraacetylated
N-azidoacetyl-D-mannosamine to generate unnatural azide moieties
onto their membrane surfaces. Subsequently, dibenzocyclooctyne-
coupled dextran sulfate (DBCO-DS) was attached via click chemistry
to azide-containing parental cells, resulting in the creation of
macrophage-targeted EVs. This innovative targeting modification
holds promise for advancing orthopedic disease treatment by
allowing the incorporation of targeting molecules into EVs, thereby
achieving bon-specific targeting while maintaining structural
stability.

MSC-EVs combined with biomaterials to improve bone
targeting capabilities
MSC-EVs can be directly employed in bone disease treatment,
typically through the injection of an aqueous solution containing
MSC-EVs into the circulation or tissue to enhance tissue repair.
However, the direct injection of free MSC-EVs in aqueous solutions
poses challenges, as they are difficult to retain in the target region
for extended periods and may be promptly removed, hindering
the full utilization of their biological functions [136]. Consequently,
direct injection of MSC-EVs in an aqueous solution may not be an
optimal strategy. Currently, numerous studies have reported cases
where MSC-EVs are combined with biomaterials to enhance
clinical therapeutic efficacy. This approach aims to confer MSC-EVs
with the capability of controlled drug release at the disease site in
a dose- and time-dependent manner [136, 137]. The ideal
biomaterials for combination with MSC-EVs should possess the
following properties: I. The in vivo degradation rate of the material
should not be excessively fast, ensuring the delivery of MSC-EVs to
the target tissues and allowing control over the release rate of the
loaded drug [138]. II. After the release of the MSC-EVs loaded drug,
the biomaterial should degrade within the tissue, and the
degradation rate should align with the regeneration rate. III. The
biomaterials should be targeted and can be co-targeted with MSC-
EVs for efficient delivery to the disease site [139].
Hydrogels, owing to their excellent biocompatibility, biodegrad-

ability, and advantageous properties for cell infiltration and
adhesion, have been increasingly utilized in scientific research
and clinical application [140]. Studies indicate that biomolecules
bound to hydrogels maintain their structure and function for an
extended period, attributed to the hydrogel’s ability to remodel
the microenvironment, facilitating the storage and uptake of MSC-
EVs while enabling targeted delivery to bone tissue [141]. For
example, hydrogels loaded with MSC-EVs exhibit the capacity to
target bone tissue, promoting the repair of bone tissue defects
and mitigating disc degeneration [142, 143]. Mechanistically, the
synergistic combination of hydrogels and MSC-EVs may offer
enhanced efficacy for alleviating bone diseases by modulating
angiogenesis, ameliorating inflammation, and remodeling the
immune environment [140, 144]. Additionally, other biomaterials,
including degradable implants, tissue-derived materials, and
growth factors, may offer potential options to improve the
targeting and therapeutic efficiency of MSC-EVs.
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THERAPEUTIC APPLICATIONS OF MSC-EVS IN BONE-RELATED
DISEASES
Considering MSC-EVs’ ability to target specific cells or tissues and
minimize the risk of toxicity to non-target tissues, they have been
designed as a novel drug carrier for direct drug delivery to bone
tissues, addressing various bone-related diseases, including OA,
osteoporosis, RA, osteosarcoma (Fig. 2) (Table 1).

Osteoarthritis
Osteoarthritis (OA), a prevalent joint disease, is characterized by
articular cartilage damage involving degeneration, fibrosis, fractures,
defects, and overall joint surface impairment [145]. MSC-EVs emerge
as promising drug carriers due to their capacity to deliver contents
precisely to chondrocytes. For instance, MSC-EVs ameliorate OA by
targeting histone deacetylase 3 and STAT1/NF-κB p65, delivering
miR-326 to chondrocytes and cartilage, and inhibiting cell death
within cartilage [146]. However, traversing the dense ECM of
cartilage for molecules like miRNA remains challenging. Thus, the
use of engineered EVs for delivery becomes a potential option. Liang
et al. [133] engineered EVs by attaching chondrocyte affinity
peptides to the N-terminal end of the EVs surface protein Lamp2b.
Subsequently, they employed liposome membrane fusion to form
hybridized chondrocyte-targeted EVs, encapsulating the CRISPR/
Cas9 plasmid. The results demonstrated that such engineered EVs
effectively targeted chondrocytes within cartilage injury, mitigating
the degradation of ECM proteins and ultimately alleviating OA.

Osteoporosis
Osteoporosis, a systemic metabolic bone disease, primarily results
from bone mass loss, destruction of bone tissue microstructure,
and increased bone fragility, leading to fractures in patients [147].
The root cause of osteoporosis lies in the imbalance between
osteoblasts and osteoclasts, disrupting bone metabolism and a
shift in bone marrow cell lineage from osteoblasts to adipocytes.
Current osteoporosis drugs, such as bisphosphonates, estrogens,
and calcitonin, lack bone tissue targeting, resulting in poor
therapeutic efficacy and associated side effects like nephrotoxicity
and jaw necrosis [148, 149]. Given the excellent bone tissue
targeting properties of MSC-EVs, they have been applied as drug
carriers for osteoporosis treatment. For example, MSC-EVs-loaded
LncRNA MALAT1 can target bone tissue by mediating the miRNA-
34c/SATB2 axis, effectively alleviating osteoporosis [30]. Engineer-
ing modifications can further enhance the bone-targeting ability of
MSC-EVs, thereby improving the therapeutic efficiency of osteo-
porosis drugs. The coupling of BM-MSC-EVs with BM-MSC-specific
aptamers enhances the bone targeting of EVs, facilitating targeted
drug delivery to bone tissue, promoting bone regeneration, and
ameliorating osteoporosis [128]. Similarly, utilizing CXCR4-based
EVs in combination with nanoparticles, expressing CXCR4 in the
nature of EVs enables bone-targeted drug delivery, which could
accumulate and release drugs in the bone marrow to reverse
aging-related bone loss [150]. In summary, drug carriers based on
MSC-EVs present a promising strategy against osteoporosis.

Fig. 2 The clinical potential of MSC-EVs is multifaceted. They serve as drug carriers, have natural targeting capacity-engineered
modifications, and exhibit synergy when combined with biomaterials in bone diseases.
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Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic autoimmune disease with
systemic involvement, characterized by joint inflammation,
destruction of bone and cartilage, and loss of function [151].
Despite the use of NSAIDs, disease-modifying anti-rheumatic drugs
(DMARDs), and biologics (e.g., TNF-α antagonists, IL-1 receptors
and IL-6 receptors) in RA treatment, factors such as lack of
specificity and low bioavailability continue to emphasize the need
for innovating therapeutic approaches [152, 153]. Fortunately,
MSC-EVs play a role in the amelioration of RA and can suppress
inflammation through factors such as IL-1. This mechanism might
be related to MSC-EVs’ ability to regulate the immune microenvir-
onment by influencing the numbers of T cell and B cell subsets
[154, 155]. Additionally, effective modulation of pro-inflammatory
M1 and anti-inflammatory M2 macrophages, crucial in the
inflammatory and autoimmune responses of RA, can mitigate the
disease progression [156]. In a study, surface modification of
macrophage-derived EVs with the anti-inflammatory cytokine
interleukin-10, coupled with the encapsulation of the chemother-
apeutic agent betamethasone sodium phosphate in EVs, facilitated
targeted delivery to bone tissue, promoting M2 macrophage
polarization and improving rheumatoid joint progression [157].
However, few studies have been reported on the use of
engineered modified MSC-EVs for RA therapy. Considering the
immunomodulatory capabilities of both MSC-EVs and macro-
phages, drug delivery to bone tissue through engineering
modifications to MSC-EVs may present a potential therapeutic
modality for RA [73, 158]. While more experiments are necessary to
validate this speculation, natural MSC-EVs, as drug carriers,
exhibited promising therapeutic effects in RA treatment [159].

Osteosarcoma
Osteosarcoma is a malignant tumor arising from mesenchymal
cells, typically occurring in adolescents. Paradoxically, studies
have revealed that MSC-EVs are involved in the dual regulation
of osteosarcoma progression. On the one hand, they promote
the proliferation and metastasis of osteosarcoma while simulta-
neously inhibiting its progression. For instance, lncRNA XIST in
MSC-EVs can promote osteosarcoma growth and metastasis
through the miR-655/ACLY signaling [41]. Conversely, miRNA-
150 carried by MSC-EVs inhibits the proliferation and migration
of osteosarcoma cells by regulating IGF2BP1 [160]. The contra-
diction arises from the diverse contents carried out by MSC-EVs.
Nevertheless, it is undeniable that MSC-EVs can serve as
effective drug carriers for targeted osteosarcoma treatment.
For example, loading doxorubicin into MSC-EVs facilitates
osteosarcoma therapy, with doxorubicin-loaded MSC-EVs target-
ing osteosarcoma therapy via the SDF1-CXCR4 axis [90, 113].
While there is a shortage of studies on the use of engineered
MSC-EVs specifically for osteosarcoma treatment, insights from
related cases can offer valuable perspectives. Huang et al. [161]
demonstrated the preparation of c(RGDyK)-modified and MEG3-
loaded EVs to enhance their targeting of osteosarcoma,
effectively inhibiting osteosarcoma progression. This suggests
the potential application of engineered MSC-EVs in advancing
targeted therapies for osteosarcoma.
Importantly, the efficacy of MSC-EVs for the treatment of bone

disease needs to be confirmed by more clinical studies. Currently,
OA-based clinical studies have focused on MSC, and clinical
studies have demonstrated that MSC can alleviate the symptoms
of OA and promote cartilage regeneration [162, 163]. In addition,
clinical studies have been used to confirm the efficacy of MSC-EVs
in the treatment of OA, and unfortunately these two clinical
studies have not yet been completed (NCT05520125,
NCT04998058) [164]. Similar to OA, research on degenerative disc
disease has focused on MSC and clinical studies have demon-
strated that MSC can relieve back pain and slow the progression of
degenerative disc disease (NCT04499105, NCT04759105) [165]. In

addition, a Phase I clinical study of MSCEVs for the treatment of
degenerative disc disease is ongoing and has not yet reached
definitive conclusions (NCT04849429). For osteosarcoma, MSC-EVs
have mainly been used as biomarkers for tumor diagnosis, and a
clinical study at Ruijin Hospital in China confirmed the promising
diagnostic potential of MSC-EVs in osteosarcoma (NCT05101655,
NCT03108677) [166]. Considering that MSC-EVs have similar
properties to MSC, MSC-EVs have a promising future for the
treatment of bone diseases, but more research is needed to
promote the clinical study and application of MSC-EVs for the
treatment of bone diseases.

CONCLUSION AND FUTURE PERSPECTIVES
MSC-EVs are considered an effective tool for promoting tissue
repair and regeneration. In recent years, extensive research has
delved into the therapeutic potential of MSC-EVs in treating bone-
related disorders. Their mechanisms and clinical applications have
been widely explored. Functioning as bio messengers loaded with
genetic material, MSC-EVs play a crucial role in regulating the
progression of bone-related diseases. This involves actions such as
promoting angiogenesis and maintaining bone metabolic home-
ostasis through miRNAs and lncRNAs, thereby alleviating condi-
tions like OA, RA, and osteoporosis. Capitalizing on their
exceptional properties, including high biocompatibility, low
immunogenicity, easy penetration of biological barriers, and
prolonged circulating half-life, MSC-EVs are acknowledged as
promising vehicles for treating bone-related diseases. They can
alleviate the disease symptoms by carrying various loads, such as
NSAIDs, chemotherapeutic agents, and miRNAs. However, recog-
nizing the inherent limitation of natural MSC-EVs in low bone
targeting, their efficacy can be significantly enhanced through
diverse engineering modification strategies. These modifications
aim to improve the precision of drug delivery, increase loading
efficiency, enable controlled release, and improve bone targeting.
MSC-EVs exhibit the potential to revolutionize the treatment of
bone-related diseases, thus a novel and promising therapeutic
strategy.
However, the clinical application of MSC-EVs faces several

challenges. First, there is a pressing need for effective procedures
to purify clinical-grade MSC-EVs from samples, necessitating the
development of robust purification guidelines. Second, the
evaluation and analysis of heterogeneity within subpopulations
of MSC-EVs pose challenges, given that individual MSC-EVs loaded
with different biomolecules can significantly impact tissue
biological functions. Thirdly, the administration route, optimal
dosage, efficiency, and cost-effectiveness of MSC-EVs as drug
carriers require thorough evaluation. Additionally, feasible strate-
gies must be identified for engineering modifications on a large
scale to enhance the therapeutic applications of MSC-EVs.
Furthermore, more extensive clinical research is essential to

confirm the clinical utility and safety of bone-targeted MSC-EVs,
especially when combined with biomaterials and promising AI
strategies. The paradoxical role of MSC-EVs in regulating
osteosarcoma progression, simultaneously promoting tumor
proliferation and metastasis while inhibiting tumor progression,
adds complexity. Consequently, careful consideration is necessary
to avoid potential tumorigenic effects when utilizing MSC-EVs as
drug carriers for osteosarcoma treatment. Despite these chal-
lenges, the potential of bone-targeted MSC-EVs as a next-
generation therapeutic platform for bone-related diseases remains
promising.
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