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COVID-19 related neurological manifestations in Parkinson’s
disease: has ferroptosis been a suspect?
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A rising number of patient cases point to a probable link between SARS-CoV-2 infection and Parkinson’s disease (PD), yet the
mechanisms by which SARS-CoV-2 affects the brain and generates neuropsychiatric symptoms in COVID-19 patients remain
unknown. Ferroptosis, a distinct iron-dependent non-apoptotic type of cell death characterized by lipid peroxidation and
glutathione depletion, a key factor in neurological disorders. Ferroptosis may have a pathogenic role in COVID-19, according to
recent findings, however its potential contributions to COVID-19-related PD have not yet been investigated. This review covers
potential paths for SARS-CoV-2 infection of the brain. Among these putative processes, ferroptosis may contribute to the etiology of
COVID-19-associated PD, potentially providing therapeutic methods.
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FACTS

● Ferroptosis may have a pathogenic role in COVID-19.
● The brain is infected by SARS-CoV-2 via potential paths.
● Ferroptosis may contribute to the etiology of COVID-19-

associated Parkinson’s disease.

OPEN QUESTIONS

● What are the links between COVID-19 and Parkinson’s
disease?

● What are the potential role of ferroptosis in COVID-19-related
Parkinson’s disease?

INTRODUCTION
Global anxiety and an economic catastrophe have been brought on
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
epidemic, often known as the 2019 new coronavirus disease (COVID-
19) pandemic [1]. As of 17 December 2023, there have been 772
million confirmed cases of COVID-19 worldwide, including 6.9 million
deaths, reported to the World Health Organization [2]. The impact of
COVID-19 has been unsurpassed thus far, and its long-term effects
might be far more disastrous [3, 4]. The SARS-CoV-2 virus, which
causes the current COVID-19 pandemic, affects more than just the
respiratory system, it also affects other organs and tissues [5]. SARS-
CoV-2 has recently been discovered in neurons in several parts of the
brain, including substantia nigra [6, 7]. Several individuals with SARS-
CoV-2 infections have reported experiencing acute and subacute
neurological complications [8–10]. Due to a number of causes that
cause a reduction in the dopaminergic neurons of the substantia

nigra followed by striatal dopamine depletion, patients with
Parkinson’s disease (PD) have a variety of motor and non-motor
impairments [11]. In this review, we explore current evidence
indicating a potential pathogenic links between COVID-19 and PD,
and provide directions for potential therapeutic approaches that
target ferroptosis.

COVID-19 AND PD: A MORE DEFINED PICTURE
While the specific mechanism causing the presumable degrada-
tion of nigrostriatal dopaminergic neurons after a viral infection is
still unknown, viral infection is receiving more and more attention
as a cause of PD [12, 13]. Studies have indicated that SARS-CoV-2
can infiltrate the central nervous system (CNS) and cause
additional neurological dysfunction in a considerable percentage
of infected patients [9, 14].
36% of SARS-CoV-2 infections experience neurological symp-

toms during the acute stage, 25% of which may be linked to CNS
involvement directly [15]. The substantia nigra are particularly
susceptible to SARS-CoV-2 [16]. Not all neuronal populations are
equally prone to degeneration. Due to their intrinsic characteristics,
such as high energy needs to support heightened basal oxidative
phosphorylation in the mitochondria, high axon terminal density,
and substantial axonal arborization, dopaminergic neurons are
particularly susceptible to degeneration. Interestingly, at least 20
cases show that COVID-19 patients experienced clinical parkinson-
ism following SARS-CoV-2 infection [17], pointing to a potential link
between COVID-19 infection and newly formed parkinsonism.

COVID-19 NEUROTROPISM AND PD: EXPLORING THE LINKS
The CNS has been disrupted by COVID-19 in a variety of ways,
including direct SARS-CoV-2 invasion of neuronal cells, huge
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inflammatory elements driven by severe systemic inflammation
flowing into brains, respiratory failure linked brain ischemia,
etc [18–20].

Olfactory bulb
Up to 20% of adults with COVID-19 infected individuals exhibit
anosmia/hyposmia and ageusia, which is a neurological symptom,
at an early stage of the viral illness [21]. Anosmia, however, is a
well-known precursor signal for PD development [22]. Further-
more, studies showed that SARS-CoV-2 is able to enter directly
through the olfactory neurons and, intriguingly, without first
affecting the lungs [23]. Impaired neurogenesis in the olfactory
system may bing on the anosmia in COVID-19 and PD [24]. SARS-
CoV-2 may have direct access to brain areas for the development
of PD, according to neuropathological investigations utilizing
immunostaining of α-synuclein aggregates that imply that PD
starts in either the olfactory or intestinal neurons and progresses
to the brain. Apparently, SARS-CoV-2 may enter the brain by the
olfactory pathways and spread to the basal ganglia, brainstem,
and piriform and infralimbic cortex [25].

Gut microbiome and gut physiology
A systemic inflammatory state that SARS-CoV-2 induces may
enhance the risk for PD in addition to the direct invasion of the
CNS [26]. Gastrointestinal symptoms are also brought on by
COVID-19, and SARS-CoV-2 RNA has been found in the feces of
infected individuals, suggesting that the virus is intestinal in origin.
According to a recent study [25], enterocytes are the main target
cells of SARS-CoV-2 and they respond to the infection by
triggering a powerful inflammatory response. These results could
emphasize COVID-19’s possible function as a PD risk factor even
more [27].
Another idea contends that the gut microbiota is the starting

point of the inflammatory process that results in PD [28].
Surprisingly, the neurological symptoms and gut microbiota
changes seen in patients of COVID-19 are also frequently present
in patients of PD [29]. Moreover, SARS-CoV-2 intestinal infection
may change gut physiology in general and gut microbiota [30],
impacting all aspects that “peripherally” contribute to the etiology
and development of PD [31].

Angiotensinconverting enzyme 2 (ACE2)
One of the major receptors that facilitates the entry of SARS-CoV-2
into human cells, is the ACE2 receptor [32, 33]. After infection,
COVID-19 has a greater affinity for protein S, which allows the viral
glycoprotein to attach to host cells ACE2 [34–36]. These receptors
are widely distributed on neurons and glial cells of many brain
areas, including cerebral cortex, striatum, substantia nigra, and
brain stem [37]. In dopaminergic neurons, which are diminished in
PD patients, ACE2 is significantly expressed and may contribute to
the aggravation of pre-existing symptoms or a more severe
COVID-19 infection [38]. Due to ACE2 and DOPA decarboxylase co-
express and co-regulate in non-neuronal cell types, the dopamine
synthesis route may be implicated in the pathogenesis of COVID-
19 [39, 40]. ACE2 expression is downregulated by SARS-CoV
infection, which may contribute to the impairment of dopamine
production [41–43]. There is evidence that the expression levels of
ACE2 in brains of PD patients have reduced, causing dopaminergic
neuron loss and degeneration [44–46].

COVID-19 and PD: shared inflammatory pathways under
oxidative stress
SARS-CoV-2 has the capacity to generate a dysregulation of
cytokines-“cytokine storm“ [47]. In order to regulate the infection
that might damage neurons, cytokines such interleukin receptor-2,
interleukin-6, and tumor necrosis factor are released by infected
neurons [48]. The development of both COVID-19 and PD may be
significantly influenced by oxidative stress and cytokine storm.

Moreover, the blood-brain barrier (BBB) may break down as a result
of the severe systemic inflammatory response brought on by viral
infection. As a result, peripheral cytokines may be able to enter the
CNS, where they may cause or exacerbate neuroinflammation [49].
Virus-induced inflammation is thought to contribute to neurode-
generation [50], as is “multiple hit” damage [51]. Just like the “two
hit” concept of PD, the COVID-19 infection might have served as an
infectious second hit [52]. The inflammatory response induced by
acute or chronic infection may initiate or accelerate early and
subclinical processes underlying the early stages of PD. Addition-
ally, research on neurodegenerative diseases and other viral
infections indicates that systemic inflammation brought on by
SARS-CoV-2 infection may further contribute to neuroinflammatory
processes and increase susceptibility to PD [53]. Also, the discovery
of possible therapeutic strategies for the treatment of COVID-19
and PD is aided by the targeted suppression of caspases and
nuclear factor kappa B activation [54]. Due to the anti-inflammatory
properties of vitamin D3, regular supplementation with 2000–5000
IU/day of D3 may help older persons with PD reduce the evolution
of their condition and may also provide further protection against
COVID-19 [55].

α-synuclein
The nigrostriatal dopaminergic system suffers from neurodegen-
eration brought on by α-synuclein, which is clinically evident as
the usual PD/parkinsonian symptoms. α-synuclein overexpression
is thought to be related to SARS-CoV-2 infection. SARS-CoV-2
neuroinfection causes increased levels of α-synuclein [46, 47].
Indeed, SARS-CoV-2 infection seems to cause α-synuclein aggre-
gation in the brains of COVID-19 cases [56]. In vitro experiments
have demonstrated that the SARS-CoV-2 N-protein speeds up the
aggregation of α-synuclein [57]. N-protein microinjection dis-
rupted the α-synuclein proteostasis and enhanced cell mortality in
SH-SY5Y cells [57]. Besides. the SARS-CoV-2 infection may
potentially hinder the removal of α-synuclein. The overexpression
of α-synuclein, which may play a role in the immune response [58],
may then cause microglia to become active [59]. Microglia cells
would amp up the inflammatory response and release inflamma-
tory cytokines and chemokines, which would result in neuronal
death [60, 61]. Furthermore, glutamate excitotoxicity, which is
connected to neuronal degeneration, may result from neuroim-
mune reactions to an infection [62, 63]. Therefore, SARS-CoV-2
infection seems to affect α-synuclein and death of dopaminergic
neurons, which is known to cause PD.

Glial cells
Astrocytes and microglia, in particular, are now considered to play
a significant role in both beneficial and negative host responses
during CNS illness states [64]. With the increasing number of
individuals infected and re-infected across the world, microglia
may have a role in the pathophysiology of post-COVID-19
neurological diseases, including PD [65]. By up-regulation of
inflammatory cytokine genes and enhanced BBB permeability,
reactive astrocytes are frequently engaged in processes of
neurodegeneration and neuroinflammation. When pathogen-
derived or endogenous ligands are detected by injured cells,
pattern recognition receptors (PRRs), which are produced by
astrocytes and microglia, start the innate immune response [66].
Toll-like receptors (TLRs), a well-known class of PRRs, might be
involved in the cytokine storm brought on by SARS-CoV-2 [67]. In
fact, TLR4, are likely to detect SARS-CoV-2-derived molecular
patterns and trigger an inflammatory response. TLR2 and
TLR7/TLR8 are also activated by SARS-CoV-2 [68], A cytokine
storm in the CNS may emerge from the simultaneous activation of
several TLRs. TLRs contribute to PD by mediating the associated
neuroinflammation and glial activation [69]. The interaction
between α-synuclein and microglial TLR2 promotes the growth
and spread of α-synuclein pathology [69].
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Endoplasmic reticulum stress and mitochondria
As SARS-CoV-2 simultaneously inhibited the expression of
SELENOF, SELENOM, SELENOK, and SELENOS, the endoplasmic
reticulum is an organelle that is badly damaged by the virus.
Endoplasmic reticulum stress and the unfolded protein response
are driven by coronavirus replication in infected cells [70–73].
Although endoplasmic reticulum-resident selenoproteins are
known to have a role in preserving endoplasmic reticulum
homeostasis, a connection between coronavirus infection and
endoplasmic reticulum-resident selenoproteins has not yet been
established [74]. Moreover, mitochondria have a role in the
induction of the inflammatory response, including the production
of mitochondrial reactive oxygen species(ROS) and the up-
regulation of the expression of genes linked to glycolysis-related
enzymes, which has also been extensively reported in the CNS in
COVID-19 [75]. Dysregulation of the mitochondrial ACE2/MrgE/NO
axis may have a significant effect on the neurodegenerative
processes of dopaminergic neurons, where mitochondrial dys-
function and oxidative stress may have a substantial impact [76].

FERROPTOSIS SIGNATURE IN SARS-COV-2 INFECTION AND
MOLECULAR MECHANISMS OF FERROPTOSIS
A case study of a COVID-19 patient has showed the presence of a
ferroptosis signature in cardiac and renal tissues [77]. The finding
was the first to document a ferroptosis signature in COVID-19,
which was thought to be a risk factor for organ damage. Moreover,
an in vitro investigation revealed that glutathione peroxidase 4
(GPX4), which was the brake of ferroptosis, was reduced by SARS-
CoV-2 [78]. SARS-CoV-2 infects pacemaker cells easily, resulting in a
noticeably increased rate of ferroptosis [79]. A growing body of
research has revealed that ferroptosis plays significant pathogenetic
roles in cancer, ischemia organ damage, and dementia since it was
first used by Dixon et al. [80]. The precise mechanism underlying
ferroptosis is still unknown, but it is known that altered iron
metabolism, glutathione (GSH) depletion, GPX4 inactivation, and
increased PUFA peroxidation by ROS play key roles in its onset and
progression [80, 81]. In general, iron overload in cells, decreased
GPX4 and xCT expression, activation of acylCoA synthetase long-
chain family member-4 (ACSL4) and lysophosphatidylcholine
acyltransferase-3, and an increase in lipid peroxidation are the four
main mechanisms that induce ferroptosis [82–84].

THE POTENTIAL ROLE OF FERROPTOSIS UNDERLIES COVID-19-
RELATED PD
Ferroptosis may exist in COVID-19-related PD
A potentially lethal aspect of SARS-CoV-2 infection is the
involvement of neuropsychiatric symptoms, as was mentioned
above. Ferroptosis has been identified as a key mechanism for the
death of dopaminergic neurons in PD [85]. Severe behavioral
impairment and neuronal death of mice given the ferroptosis
inhibitor ferrostatin-1 24 h before 1-methyl- 4-phenyl-1, 2, 3, 6-
tetrahydropyridine(MPTP) were greatly reversed [86]. Ferrostatin-1
also has a neuroprotective impact on SH-SY5Y cells injured by
rotenone and 1-methyl-4-phenylpyridinium(MPP+) [87, 88], sug-
gesting that ferroptosis could offer an alternative for treating PD.
The enhanced ferrostatin-1 and liproxstatin-166 analogs, two
members of the new generation of ferroptosis inhibitors, can be
used to assess the involvement of ferroptosis in SARS-CoV-2
infection as well as to potentially treat COVID-19 [89, 90].

Dysregulation of iron metabolism in COVID-19-related PD
Iron metabolism impairment, a significant contributor to PD
[91, 92], has been extensively established in a significant fraction
of COVID-19 patients in response to SARS-CoV-2 infection [93–95],
which corresponds with the risk of severe and fatal COVID-19
illness. In our previous study, we elaborated the mechanism of

dysregulation of iron metabolism and ferritinophagy in COVID-19
[96, 97]. In addition, ceruloplasmin levels in long-term COVID-19
patients exhibit a declining tendency when compared to those in
COVID-19 patients and healthy controls [98]. PD is partly caused
by the neurotoxicity of iron accumulation brought on by
inadequate or reduced ferroxidase activity of ceruloplasmin
[99, 100]. The accumulation of iron may cause a rise in the
intracellular labile iron (II) pool and Fenton reaction, which results
in the production of lipid ROS, and ferroptosis. Intracellular iron
depletion would be potential treatment options for COVID-19.
Deferoxamine and imatinib have been shown to prevent SARS-
CoV-2 infection of pacemaker cells as well as SARS-CoV-2
infection-induced ferroptosis [79].

GSH-GPX4 axis in COVID-19-related PD
Mitochondrial ROS production was increased by SARS-CoV-2
infection and its replication [101]. GPX4, located in the mitochondria,
specifically guards against the ferroptotic cell death. GPX4 gene
expression is suppressed by SARS-CoV-2, which promoted the occur
of ferroptosis. A fundamental investigation that infected African
green monkey kidney (Vero) cells with patient-derived SARS-CoV2
discovered that the mRNA levels of GPX4 were considerably
downregulated, suggesting a connection between ferroptosis and
SARS-CoV-2 [78]. Leukopenia in COVID-19 patients may be related to
ferroptosis in leukocytes and suppressed GPX4 caused by SARS-CoV-
2 [102].The lack of GPX4 induced the loss ability of GSH be
peroxidized to minimize the lipid ROS produced by the Fenton
reaction. Lipid peroxidation and ferroptosis would therefore follow
from an accumulation of lipid ROS. Consequently, it’s probable that
ferroptosis contributes to the PD symptoms of COVID-19 (Fig. 1).

DISCUSSION
Challenges in establishing causal relationships between
COVID-19 and PD
Many concerns still need to be addressed, despite the fact that
numerous linked research about COVID-19 and PD are beginning
to emerge. It is uncertain if distinct SARS-CoV-2 strains cause
different neurological symptoms. To determine the connection
between SARS-CoV-2 mutations and PD manifestations, further in-
depth analyses are required. Moreover, it has been discovered that
several forms of cell death, such as autophagy, apoptosis, and
pyroptosis, are implicated in the pathogenic mechanism of both
COVID-19 and PD [103, 104]. Since it is currently rather challenging
to determine the cross-talk among different cell death pathways in
COVID-19 related PD, none of the above mentioned mechanisms
of cell death, other than ferroptosis, are explored in this review.
Furthermore, the age and gender of the SARS-CoV-2 infection
victim, which might be contributing variables to the development
of PD, are not assessed. Moreover, it would be required to account
for both environmental and genetic influences.
Both direct neuronal invasion and indirect effects of neuroin-

flammation may be involved in the neuropsychiatric symptoms of
COVID-19. A deeper comprehension and functional characterize of
COVID-19 related PD will be possible through the use of high
throughput assessment and patient-derived organoids, which may
provide a viable means of elucidating pathophysiologic hints and
possible treatment approaches.

The Potential clinical implications of ferroptosis in COVID-19
related PD
As a novel form of cell death, ferroptosis has great promise for study in
COVID-19 associated with PD. A potential treatment approach might
involve focusing on ferroptosis. So far, iron chelators and lipophilic
antioxidants have been the principal approaches of suppressing
ferroptosis [105]. Through the control of the Fenton reaction, iron
chelators such as deferoxamine chelate iron and halt lipid peroxida-
tion. It is important to note that iron alterations in the brain
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may be easily tested using quantitative susceptibility mapping [106].
Ferrostatin-1 and liproxstatin-1 are typical lipophilic antioxidants
that scavenge lipid peroxides and inhibit ferroptosis. Studies have
demonstrated that both iron chelators and lipophilic antioxidants
could prevent the progression of PD [107]. Furthermore, deferoxamine
lowers the amounts of IL-6, a major inflammatory cytokine generated
during COVID-19 [108], suggesting that deferoxamine may be used as
a medication to treat COVID-19-induced PD. Nevertheless, no study
has yet evaluated the effectiveness of lipophilic antioxidants in the
COVID-19 therapy process. Moreover, future research should look into
the potential benefits of combining anti-inflammatory cytokines with
ferroptosis interference to improve the resilience of COVID-19-related
PD patients, considering that inflammatory cytokine storms are
believed to be key contributors to COVID-19.
To the best of our knowledge, neither clinical trials assessing

ferroptosis inhibitors in COVID-19 related PD nor any indication of
the ferroptosis signature in the brain tissues of COVID-19 patients
exist. Though we have made great progress in understanding the
pathogenic role of ferroptosis in PD, the precise role that
ferroptosis plays in the brain damaged by SARS-CoV-2 and how
it initiates the inflammation that ultimately causes brain damage is
unclear. In addition, it is hard to describe ferroptosis is a side effect
of SARS-CoV-2 infection or if it’s a way for the virus to replicate and
become more dangerous during COVID-19. Despite we have
elucidated the connection between three primary ferroptosis
pathways and COVID-19, which path is more important in COVID-
19-related brain damage? It is necessary to address these issues in
order to make a complete and convincing argument for the
therapeutic use of ferroptosis inhibitors.

CONCLUSION REMARK
From the beginning of the epidemic, scientists have been working
feverishly to discover a new COVID-19 vaccine or possible
treatment. This review generally overviews the relationship
between COVID-19 and PD (Fig. 2). The course of the COVID-19

and PD exhibit similarities in some biochemical processes, including
oxidative stress, inflammation, and protein aggregation [53]. Since
that COVID-19 exhibits unusual symptoms including GSH depletion,
GPX4 inactivation, abnormal iron metabolism, and elevation of
PUFA peroxidation by reactive oxygen species, it is possible that
SARS-CoV-2 might cause ferroptosis in the dopaminergic neurons,
which would then contribute to PD. Therefore, this review presents
evidence that ferroptosis is intimately linked to and holds
considerable promise for research on COVID-19-related PD, which
provide a promising research direction. We speculate that
ferroptosis contributes to SARS-CoV-2 infection-related PD in light
of the possible link between ferroptosis and neurological
abnormalities in COVID-19 patients. Although there is a lack of
evidence on effective treatment strategies for COVID-19-related PD,
one potentially effective tactic would be to target ferroptosis.
However, it is yet unknown how ferroptosis functions in SARS-CoV-
2 infected dopaminergic neurons or whether it represents a
promising new therapeutic target for COVID-19-related PD therapy.
Further researches are aggressively explored to confirm that
ferroptosis occurs in COVID-19, clarify its precise mechanism, and
determine if it is linked to brain damage associated with COVID-19.

METHODS
Relevant articles were reviewed in databases of PubMed and Web
of Science. To identify eligible studies, we searched and exploded
the following key terms and combinations: (“COVID-19” or “SARS-
CoV-2”) and (“Parkinson’s disease” or “PD”) and/or (“Ferroptosis”).
We also identified related publications written in Chinese from
China National Knowledge Infrastructure (CNKI) database and
Wanfang using the above combinations terms in Chinese. The
search was conducted in Oct 1, 2023.

Inclusion and exclusion criteria
The inclusion criteria were as follows: (1) full-text articles; (2)
providing sufficient data about the links between COVID-19

Fig. 1 The involvement of ferroptosis in SARS-CoV-2 infection related to PD. SARS-CoV-2 infection may lead to ferroptosis for PD
pathogenesis, probably contributing to the initiation of the disease through two major pathways: transporter-dependent pathway with iron
imbalance and the intrinsic or enzyme regulated pathway.
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neurotropism and PD; (3) iron underlies COVID-19-related PD; (4)
GSH-GPX4 Axis in COVID-19-related PD.
Studies were excluded for the following reasons: (1) irrelevant

papers of COVID-19-related psychiatric symptoms; (2) papers
about COVID-19 vaccine; (3) nursing care/management of COVID-
19 patients; (4) social and psychological impact of COVID-19; (5)
sleep disturbances of COVID-19; (6) lockdown effects/impact of
home confinement;

Search selection
Initial screening of total retrieved articles was made by title and
abstract. Authors (FJ) then performed a full-text evaluation of relevant
articles and of articles where the abstract did not provide sufficient
information. The search was conducted independently by the authors
(JH) and compared against each other to identify/discuss discrepan-
cies. Articles which did not meet inclusion criteria were excluded.
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