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Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy,
as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that
severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against
excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with
invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe
infection. We highlight critical role of normal mitophagy in preventing severe infection.
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FACTS

1. Mitochondrion is a bacteria-like organelle, and regulates
cellular metabolism, differentiation and death. Mitophagy is
the last resort to maintain mitochondrial health. Dysfunc-
tional mitochondria and insufficient mitophagy lead cellular
stress and severe infection.

2. Intracellular pathogens and inflammatory pathway partici-
pate in inhibiting complete mitophagy during severe
infection. The exact mechanisms need more study.

3. No selective drug to inhibit mitophagy without influencing
other autophagy for research.

OPEN QUESTIONS

1. Do intracellular pathogens block degradation of mitopha-
gosome in the way like disturbing xenophagy?

2. Is mitophagy dysfunction crucial for mild to severe
infections?

3. How to balance anti-inflammation (mitophagy) and pro-
inflammation (mitochondria) in the infectious diseases?

4. Can extracellular vesicles containing mitochondrial compo-
nents in the circulation be used as a biomarker of
mitophagy condition in the severe infections?

INTRODUCTION
Sepsis is a severe infection with one or more organ failures caused
by an imbalance between the host defense and invading

pathogens [1]. Early hyperinflammation and subsequent immu-
nosuppression are its defining features, and it occasionally
deteriorates with aberrant coagulation, hemodynamic disorder,
and microcirculatory disorder. Despite recent advances in
medicine, in 2017, sepsis accounted for 11 million (10.1–12.0)
deaths, or 19.7% (18.2–21.4) of all deaths worldwide [2]. Sepsis is
an uncontrolled stage of infection, and avoiding progressing into
sepsis is more important than treating it. Therefore, to concentrate
on the pathophysiological mechanisms of pre- and post-
uncontrolled infection, we substituted “severe infection” for
“sepsis”.
Mitochondria supply a large portion of ATP—cellular energy

currency, through its electron transport chain [3]. And reactive
oxygen species (ROS) is produced as one of its by-products.
Mitochondria contain massive amounts of danger-associated
molecular patterns (DAMPs) shared with microorganisms and
are potential hazards for cells. New data further support the
endosymbiont hypothesis that mitochondria originate from
ancient alphaproteobacterial [4]. So, injured mitochondria are like
intracellular “pathogens”, causing remote inflammation from
infected area during severe infection. Injured mitochondria
produce less ATP, and mitochondrial membrane leakage causes
proapoptotic molecules, such as ROS, mtDNA, and cytochrome C,
to enter the cytoplasm [5, 6]. Increased mtDNA in the peripheral
blood circulation is associated with poor prognosis of sepsis and
coronavirus disease 2019 [7, 8]. Therefore, maintaining mitochon-
drial homeostasis is critical for preventing and treating severe
infection [3].
Autophagy is an evolutionarily conserved self-protection

mechanism in cells. Mitophagy is a type of selective autophagy
that eliminates labeled mitochondria or their components to keep
intracellular homeostasis. Due to mitochondria as the main energy
supplier, mitophagy also modulates cellular metabolism. Promot-
ing mitophagy plays protective roles in neuromuscular disease,
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cancer, and ischemic diseases [9]. In recent years, an increasing
number of studies have indicated the intricate association
between infection and mitophagy. Therefore, we review the
new researches about the mechanism of the mitophagy pathway
and its involvement in severe infections.

MOLECULAR PATHWAYS OF MITOPHAGY
According to the initiation mechanism, autophagy is classified as a
selective or nonselective pathway. The former includes macro-
mitophagy and micromitophagy. Macromitophagy is a type of
classical mitophagy, that is to say, similar to other selective
autophagy types (aggrephagy, xenophagy, and lipophagy) [10].
The macromitophagy procedure is essentially divided into three
parts: 1) As injured mitochondria are monitored, autophagosome
precursors and phosphatidylinositol-3-phosphate (PI3P, or
PtdIns3P)-labeled omegasomes, are formed. 2) A double-
membrane phagophore (also known as isolation membrane)
extends and enwraps damaged mitochondria. Mitophagosomes
form as soon as the phagophore is enclosed. 3) Mitophagosomes
blend into lysosomes, and mitochondria are dissolved (Fig. 1). The
mechanism of micromitophagy is not entirely clear and unspeci-
fied mitophagy is macromitophagy in this review.

Macromitophagy
Initiation of macromitophagy. The key signal for macromitophagy
is ubiquitinated proteins (Ub-proteins) on the outer mitochondrial
membrane (OMM), and the PTEN-induced putative kinase 1 (PINK1)-
Parkin pathway primarily contributes to the occurrence of macro-
mitophagy [11]. Under normal conditions, the OMM has a small
amount of ubiquitin, and the translocator of the outer membrane-
translocator of the inner membrane complex constantly transports
PINK1 into mitochondria to maintain its low expression. Once
mitochondria are damaged with collapsed mitochondrial mem-
brane potential, the mitochondrial import mechanism becomes
clogged, causing PINK1 to accumulate on the OMM and become
active by autophosphorylation. Then, PINK1 phosphorylates ubiqui-
tin (Ub) on the OMM and recruits Parkin (E3-Ub ligase) to amplify
mitochondrial ubiquitination [12]. Ubiquitin-specific peptidases
(USPs), such as USP15, USP 30, and USP33, negatively regulate
macromitophagy by hydrolyzing the Ub chains of mitochondrial
surface proteins [13–15]. And USP30 also has an auto-inhibiting
activity to finely regulate mitophagy [16].
Some phospho-ubiquitin on the OMM combines with autophagy

adapters for the next step, and other Ub proteins are destroyed by
the proteasome to cause OMM rupture [17]. Mitofusin 2 (MFN2), a
GTPase for mitochondrial fusion, also links two membranes of
mitochondria and the endoplasmic reticulum (ER), a site called the
mitochondria-ER associated membrane (MAM) [18], which is a site
of initiating mitophagy. MFN2 dissipation by proteasome promotes
mitochondrial fission and isolates mitochondria from the ER and
exposes MAM proteins to promote macromitophagy initiation [19].
Mfn2 deficiency changes the shape of mitochondria. However, it
surprisingly suppresses mitophagy and lipogenesis in the alveolar
type II epithelial cells. These results also indicate that the
physiological processes are mutually intertwined [20].
The UNC-51-like autophagy-activating kinase 1 (ULK1) complex is

superior to cell autophagy and a major regulating target of autophagy
activity [21–23]. It modulates autophagy by phosphorylating
autophagy-related proteins, including ATG13, ATG14L, BECN1,
VPS15, VPS34, ATG9A, AMBRA1 and FUN14 domain containing
protein 1 (FUNDC1) [24, 25]. Under stress, ULK1 is located at the OMM
and promotes the recruitment of downstream autophagic machinery.
ULK1 complex (ULK1/2, FIP200, ATG13, and ATG101) is composed at
this time to initiate mitophagy. Its formation requires the assistance of
autophagy adapters. Among the diverse autophagy adapters
participating in macromitophagy, nuclear dot protein 52 (NDP52)
and optineurin (OPTN) are the primary proteins that first reside at the

OMM and recruit the upstream molecule ULK1 [22]. Adapter proteins
mainly recognize microtubule-associated protein 1 light chain 3
(MAP1LC3/LC3) on the phagophore, which is the mammalian
homolog of yeast ATG8, through its LC3-interacting region (LIR) to
stabilize the phagophore on the mitochondrial surface [11]. Zhou
et al. found a sequential relationship between these two roles of
adapters. They suggested that autophagy adapters competitively
bind FIP200 (scaffold of the ULK1 complex) prior to ATG8 to form the
ULK1 complex for initiating autophagy [25, 26]. TNIP1 (TNFAIP3-
interacting protein 1), a negative regulator of NF-κB activation,
inhibited mitophagy activation via competitively binding FIP200 and
TAX1BP1 with autophagy adapters [23].
The ULK1 complex helps to construct class III phosphatidylinositol

3-kinase complex I (PI3KC3-C1) on the omegasome [27], which is
another critical initiation complex for autophagy. PI3KC3-C1, consist-
ing of Bcl-2 interacting protein 1 (BECN1, also named BECN1), ATG14L,
lipid kinase vacuolar protein sorting 34 (VPS34), and protein kinase
VPS15, synthesizes abundant PI3P on the OMM and MAM. The PI3P-
positive area of the ER, known as the omegasome, is the origin of the
phagophore [28]. PI3P then recruits downstream effector proteins
such as double FYVE-domain containing protein 1, WD repeats
domain phosphoinositide interacting (WIPI) protein, and soluble N-
ethylmaleimide-sensitive factor attachment protein receptors
(SNAREs) [29, 30].
Some mitochondrial proteins directly combine with ATG8 via their

own LIR motif to participate in macromitophagy, which belong to
autophagy receptors (summarized in Table 1). They also indepen-
dently recruit other effectors to initiate mitophagy [31]. Hypoxia and
ischemia cause mitochondrial dysfunction and increase mitophagic
flux, in which FUNDC1 is the main autophagy receptor [32, 33].
Under oxidative stress, the tyrosine kinase Src becomes inactive to
phosphorylate FUNDC1 and dephosphorylated FUNDC1 gains the
function of binding ATG8 [34]. Furthermore, the transcription of
autophagy receptors BCL-2 interacting protein 3 like (NIX/BNIP3L)
and BCL-2 interacting protein 3 (BNIP3) are increased under hypoxia
stress, which belong to the B-cell lymphoma 2 (BCL) family BH3-only
proteins that drive macromitophagy and death [35, 36]. Autophagy
receptors mediating macromitophagy in severe infection are
summarized in Table 1.

Formation of mitophagosomes. On the base of the omegasomes,
the phagophores gradually extend and eventually close up.
Multiple budding sites are simultaneously built on the mitochon-
drial surface cargos to exceed mitophagosome formation [37].
This process acquires various lipids and membranes supplied from
the endomembrane system [38]. At same time, free ATG8
covalently links phagophore lipids (Phosphatidylethanolamine)
catalyzed by ATG7(E1 ligase), ATG3 (E2 ligase), and the ATG16L1-
ATG12-ATG5 complex (E3 ligase). Lipdated ATG8 fixes the
phagophore to the mitochondrial surface.
Intracellular vesicles, which originate from the EM, Golgi bodies,

and plasma membrane, are one of the most important lipid sources
for phagophores [39]. Multiple membrane dynamics regulators,
primarily SNARE proteins, tethering proteins, and Rab GTPases,
precisely regulate membrane formation, transport, and destruction,
in which Rab7A is the core element [40]. Quick dynamics and
interaction of these molecules are necessary for efficient autophagy.
The activity of Rab GTPases is regulated by the activator (guanine

nucleotide exchange factor) and the inhibitor GTPase-activating
protein. Guanine nucleotide exchange factor1 early moves to the
OMM by binding Ub and recruits Rab5 to facilitate Rab7A
translocation and activation [41]. Rab7A further recruits SNAREs
and tethering proteins to regulate movement and fusion of
intracellular vesicles [41]. TBC1D5, MON1-CCZ1 complex, and
C5orf51 shift Rab7A from lysosome to OMM/phagophores/autop-
hagosome in favor of contineous Rab7A circulation [42, 43]. ATG9A
vesicles, which are necessary for early phagophore generation,
move to the macromitophagy site or phagophore guided by Rab7A
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and its effectors (such as the retromer complex and sorting nexin
18) [38, 42, 44, 45], and SNX4 participates in ATG9A recycling from
autolysosomes [46]. The adapter protein OPTN binds ATG9A to assist
ATG9A vesicle capture [47]. COP-II vesicles also participate in
autophagosome formation [48].
Aside from transporting lipids over long distances, membrane

sources can be directly assimilated near the phagophore. In the early
stage, the lipid transfer protein ATG2A builds a bridge for the

membrane of the ER flowing to the phagophore, with one end
touching the ER and the other end binding the WIPI protein on the
border of the phagophore [49, 50]. In addition, lipid droplets near
the phagophore are decomposed by lipase PNPLA5 to supply
ingredients for phospholipid biogenesis [51].
The phagophore gradually encompasses the mitochondria, and

the double membrane of the mitophagosome is enclosed once its
blind ends fuse.

Fig. 1 Mechanism of macromitophagy. After cells suffer endogenous and exogenous stimulators, mitophagy is initiated to clear injured
mitochondria by recruiting PINK1-Parkin to ubiquitinate mitochondria. The ULK1 complex and PI3KC3 complex I synthesize robust PI3P at the
omegasome. Autophagy adapters or receptors bind ATG8 to anchor mitochondria to the phagophore. The double membrane of the
phagophore lengthens and enwraps mitochondria. Mitophagosomes fuse with lysosomes mediated by the tethering proteins (such as HOPS
complex and PLEKHM1) and SNAREs. Finally, lysosomal enzymes degrade the inner membrane and contents of the mitophagosome. Various
microorganisms, such as CVB3, IAV, Legionella, HPIV3, SARS-CoV-2, and Hantavirus, disturb the process of mitophagy, resulting in mitochondria
injury and autophagosome accumulation. ATG autophagy-related, COP-II coat protein complex-II, CVB3 coxsackievirus B3, ER endoplasmic
reticulum, HOPS homotypic fusion and protein sorting, HPIV3 human parainfluenza virus 3, IAV influenza A virus, LPS lipopolysaccharides, PI3P
phosphatidylinositol-3-phosphate, PINK1 PTEN-induced putative kinase 1, PLEKHM1 pleckstrin homology domain-containing protein family
member 1, RAB7A RAS oncogene family 7A, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, SNARE soluble N-ethylmaleimide-
sensitive factor attachment protein receptor, TBK1 TANK binding kinase 1, TLR toll-like receptor, ULK1 unc-51 like autophagy activating kinase
1, WIPI WD repeat domain phosphoinositide interacting.
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Degradation of mitophagosomes. Complete macromitophagy
ends with mitophagosomes degradation. Under physiological
conditions, ATG8 and PI3P recruit regulators of membrane
dynamics to the surface of mitophagosomes/lysosomes. Two
types of vesicles move toward each other along microtubules
mediated by Rab7A effectors [52–54].
Then, the tethering proteins, homotypic fusion and protein

sorting (HOPS) complex and Pleckstrin homology domain-
containing protein family member 1 (PLEKHM1), bind them with
their long and stiff structure at the same time [55]. After the HOPS
complex softens, two vesicles get near each other, and short SNARE
proteins on each surface incorporate SNAP29 into the heterotrimeric
complex (YKT6-SNAP29-STX17 or STX17-SNAP29-VAMP7/8) to facil-
itate the touch and fusion of their outer membranes [56, 57]. Then,
lysosomal enzymes flow into the intermembrane space and dissolve
the inner membrane of autophagosome to turn it into one vesicle.
Mitophagosomes can also fuse with cell membranes and get out

of the cell to maintain mitochondrial homeostasis, a process known
as secretory autophagy, when the degradation of mitophagosomes
is blocked or insufficient to clean injured mitochondria [58, 59].

Mechanism of micromitophagy
Micromitophagy is a highly selective method of eliminating harmful
mitochondrial components to avoid costly macromitophagy, which
runs steadily in the cells with high metabolic demand. The
micromitophagy also compensates for deficient macromitophagy to
cope with oxidative stress [60, 61]. Micromitophagy generates two
kinds of mitochondrial-derived vesicles (MDVs) in a completely
distinct way: pyruvate dehydrogenase-positive MDV and TOMM20-
positive MDV. The former buds from the OMM, which is regulated by
PINK1 and Parkin, and fuses with lysosome like the mitophagosome
pathway [62]. The latter is controlled by MIRO1 (microtubule-
associated motor proteins mitochondrial Rho GTPase 1) and DRP1,
which traffics to multivesicular bodies and lysosomes in the absence
of the SNARE complex. Another study discovered that Rab9 and
sorting nexin 9 mediate MDV budding under oxidative stress [63, 64].

Furthermore, injured mtDNA and mitochondrial proteins can only be
removed from mitochondria and broken down in the lysosome
[65, 66].

Mitophagy and severe infection. In sepsis, mitochondrial dysfunc-
tion is obvious and associated with disease progression. Macro-
mitophagy/mitophagy level increases in the early stage but fails to
resolve serious mitochondrial injury, and it oddly decreases in the
late stage, resulting damaged mitochondria accumulating in the
cells [67]. According to RNA-seq of the whole blood, patients in
ICU have lower mitophagy levels compared to patients in
emergence room, and patients with lower mitophagy have higher
SOFA scores [68]. Defective autophagy is also associated with
lymphopenia in COVID-19 [69]. Thus, we discuss the relationship
between severe infection and mitophagy in detail below.

The connection between mitophagy and microorganisms
Pathogens induce mitophagy to suppress host defense. RIG-I-like
receptors (RLRs) with mitochondrial antiviral signaling protein (MAVS)
recognize double-stranded RNA of pathogens in the cytoplasm to
induce the production of interferon (IFN) and other proinflammatory
factors [70, 71]. However, matrix protein of human parainfluenza virus
3 (HPIV3), PB1-F2 protein of influenza A virus (IAV) and glycoprotein of
hantavirus, like an autophagy adapter, link with ATG8 and
mitochondrial Tu translation elongation factor (TUFM) to activate
Ub-independent mitophagy for blocking MAVS signaling [72–74]. The
nucleoprotein of IAV also binds MAVS and LIR-containing TOLLIP (toll
interacting protein) to promote mitophagy [75]. Another viral protein,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open
reading frame 10 (ORF10), induces mitophagy by building a bridge
between NIX and LC3B [76] (Fig. 1). It is probably a common way for
pathogens to suppresses innate immune responses and causes
persistent infection via directly or indirectly promoting mitophagy.

Pathogens escape from elimination in host cells by hijacking
autophagy mechanisms. Intracellular microorganisms are also

Table 1. Autophagy receptors participate in macromitophagy in severe infections.

Name Subcellular
location

Molecular interaction Special pathophysiological effects

Bcl2 interacting protein 3 like
(NIX/BNIP3L) [35,
76, 187–189]

OMM Binding ATG8; Recruiting Parkin to
mitochondria

Participating in reticulocyte maturation and
macrophage activation; Protecting I/R injury
ischemia–reperfusion in the cerebrum; SARS-CoV-2
ORF10 induces macromitophagy by combining
with NIX; Promoting HHV-8 replication

Bcl2 interacting protein 3
(BNIP3) [118, 190–192]

OMM Binding ATG8; Inhibiting
degradation of PINK1; Recruiting
DRP1

Coordinating the process of apoptosis and
macromitophagy against cell stress; Alleviating
sepsis kidney injury; Promoting generation and
survival of memory immunocytes

Bcl-2 like 13 (BCL2L13)
[193–195]

OMM Binding ATG8; Recruiting DRP1
and ULK1

Belonging to BH3-only proteins to coordinate the
role of apoptosis and macromitophagy against cell
stress

Mcl-1 [181, 196] OMM Binding ATG8; Binding BAX/BAK Inhibiting BAX/BAK induced apoptosis; Promoting
Ub-independent mitophagy

FUN14 domain-containing
protein 1 (FUNDC1)
[32, 197–200]

OMM/MAM Dephosphorylated FUNDC1 binds
ATG8; Recruiting ULK1 and DRP1

Inhibiting IL-1β secretion in macrophage and
alleviating septic lung injury and cardiomyopathy;
Regulating mitochondrial dynamics

Activating molecule in
Beclin1-regulated autophagy
1 (AMBRA1) [201–203]

From cytoplasm
to OMM

Binding ATG8 or ATAD3A;
Activating PIK3C3 complex 1 by
binding BECN1

Compensating for the deficient PINK1/Parkin-
dependent mitophagy in Parkinson disease;
Protecting neurons from hypoxia; Blocking PINK1
import into mitochondria

Prohibitin2 (PHB2) [105,
204, 205]

IMM Binding ATG8; Stabilizing PINK1 on
the OMM

Alleviating septic kidney injury; Facilitating
macrophage to scavenge P. aeruginosa and mROS

Cardiolipin [110] From IMM to
OMM

Binding ATG8 Promoting mitochondrial apoptosis or
macromitophagy in the severe infection
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marked with Ub and degraded by the autophagy pathway, named
as xenophagy. However, some pathogens can hijack phagosomes/
autophagosomes for their own replication and secretion instead
of fusing with lysosomes. Major targets disturbed by pathogens
are SNARE proteins, RAB7A, and tethering proteins: HPIV3-derived
phosphoprotein and hantavirus-derived nucleocapsid protein
bind SNAP29 and inhibit its interaction with syntaxin17 [74, 77];
SARS-CoV-2 ORF7a promotes caspase 3 to hydrolyze SNAP29
[78, 79]; SARS-CoV-2 ORF3a binds VPS39, a subunit of the HOPS
complex, to obstruct the HOPS complex from combining with
Rab7A on the lysosome surface [80]; IAV M2 enhances the
depressant effect of TBC1D5 on Rab7A [78]. A recent article
reviewed more details of coronaviruses disturbing the autophagy
process [81]. Coxsackievirus B3, which causes severe myocarditis
and systemic infection, directly localizes to mitochondria and
induces DRP1-mediated mitochondrial fission [82]. And its
proteinase 3C causes incomplete mitophagy in the host cell via
cleaving PLEKHM1 and SNAP29 [83]. Several bacteria also block
autophagy mechanisms to lead to acute or chronic infection, such
as Legionella pneumophila and Salmonella [84, 85] (Fig. 1).
Due to the similar degrading progress of different autophago-

somes, it is reasonable that intracellular pathogens mentioned
above also block mitophagosome degradation, resulting in severe
inflammation and host cell death.

Mitophagy regulates immune disorders in severe infection
Characterized by an intense inflammatory response or cytokine
storm, sepsis in the late stage often turns to immunosuppression,
making the host susceptible to secondary infection and increasing
mortality. Pathogens, neutrophil extracellular traps, platelets, and
endothelial cells all work together to cause hyperinflammation,
but immunosuppression is related to long-term infection and
increased immune cell death, functional fatigue, and anti-
inflammatory milieu. Based on these mechanisms, two major
ways to treat sepsis are inhibiting early excessive inflammation
and ameliorating late immunosuppression [86, 87].
Most leukocytes activation is regulated by metabolism switch

and mitochondrial ROS (mROS) level. Glycolysis promotes proin-
flammatory subtypes differentiation, and oxidative phosphoryla-
tion and fatty acid metabolism are required by differentiation of
negatively regulating subtypes. However, metabolic dysregulation
and mitochondria injury is outstanding in the immunocytes from
severe infection and leads to their dysfunction [88]. Mammalian
target of rapamycin (mTOR) and AMP kinase (AMPK) are a pair of
cellular energy sensors that have opposite effects on cell
metabolism and immune cell differentiation. mTOR simulta-
neously inhibits suppresses ULK1 phosphorylation and
autophagy-related protein expression [89–91], which are antag-
onized by active AMPK. Thus, mitochondria have close connection
with immune disorders in severe infection and targeting
mitophagy or its regulators is beneficial for immunometabolism
back to normal.

Mitophagy reduces hyperinflammation in the sepsis. Mitochondria
and their components have a risk of causing uncontrolled
inflammation while activating innate immune responses to resist
infection. First, mitochondria supply an effective platform for the
NLR family pyrin domain containing 3 (NLRP3) inflammasome
activation: MAVS and cardiolipin on the OMM directly bind NLRP3
and pro-caspase 1, and mitochondrial E3 ligase MARCH5
ubiquitinates NLRP3 on K324 and K430 to facilitate NLRP3
oligomerization [92]. VDAC oligomers, mROS, and mtDNA assist
in assembling NLRP3 inflammasome and activating caspase 1 [93].
Caspase 1 not only mediates the release of inflammatory factors
and pyroptosis but also worsens mitochondrial injury and
dampens mitophagy by degrading PINK1, Parkin, and ATG8 [94].
Increased mROS and oxidative mtDNA are also associated with
PANoptosome assembly and PANoptosis [95]. Second,

cytoplasmic mtDNA is recognized by cyclic guanosine
monophosphate–adenosine monophosphate synthase, which
activates stimulator of IFN genes (STING) to promote proinflam-
matory reactions. Third, extracellular mitochondrial components,
free or encompassed in the vesicles, can cause remote and
systematic inflammation. Macrophages and other cells are
activated after engulfing these vesicles [96, 97]. MDVs are involved
in mitochondrial antigen presentation to induce autoimmune
reactions and may cause immunological injury during severe
infection [63, 98]. Lysosome disposes MDVs and presents
mitochondrial components by MHC class I molecules on the cell
membrane. Then marked cell is recognized and killed by CD8+

T cells.
B cells and dendritic cells with impaired autophagy (ATG5

deletion) develop a sterile sepsis-like inflammatory condition, and
accumulative cardiolipin accounts for this condition [99]. Thus, it is
evident that promoting mitophagy, which removes relative
incentives to block pro-inflammatory pathway, aids in inflamma-
tion control and cells survival [100]. Endosomal protein APPL1,
which shuttles among several organelles to regulate cell
proliferation and death, plays a feedback mechanism to inhibit
NLRP3 inflammasome through interacting with Rab5 to promote
mitophagosome degradation [101]. Sestrin 2, a stress-inducible
protective protein, suppresses macrophages’ NLRP3 inflamma-
some activation by upregulating ULK1 expression and recruiting
autophagy adapter p62 to induce mitophagy [102, 103]. The M2
protein of IAV is located at the OMM and then enhances MAVS
assembly, resulting in a dramatic antiviral reaction and host cell
death, which is alleviated by mitophagy [104]. Gram-negative
bacterium Pseudomonas aeruginosa causes severe respiratory
infection. Huang et al. found that microRNA-302/367 enhanced
Prohibitin2-induced mitophagy to eliminate P. aeruginosa and
ameliorate oxidative stress in alveolar macrophages [105].

Mitophagy alleviates septic immunosuppression. Sepsis in the
immunosuppression state presents an increasing apoptotic ratio
and functional exhaustion in immunocytes, such as CD4+ T cells,
CD8+ T cells, B cells, Natural Killer cells, and monocytes [106].
Mitochondria play critical roles in cell survival and apoptosis.

Mitochondrial DAMPs get a chance to enter the cytoplasm after pro-
apoptotic BCL-2 proteins BAX-BAK induce mitochondrial outer
membrane permeabilization and cyclophilin D triggers mitochondrial
permeabilization transition in the inner mitochondrial membrane
(IMM). Cytochrome c and mtDNA activate caspase-3/7 to execute
lethal or sublethal apoptosis [6, 107] (Fig. 2). Interestingly, the
mitophagy is simultaneously initiated with BAX-BAK activation to
block mtDNA-dependent inflammation [108]. Cardiolipins in the IMM
translocate to the OMM and recruit caspase-8, which activates
caspase-3/7 [109], which also promotes mitophagy as an autophagy
receptor [110]. Some BCL-2 proteins are also mitophagy receptors,
such as BECN1, NIX, BNIP3, and BCL213L (Table 1). Therefore, cells
under proapoptotic stress will survive and decrease unnecessary
inflammation if mitophagy is timely initiated.
After the immune system goes all out to fight against invasive

pathogens, effector cells accumulate damaged mitochondria and
other organelles, which may go into an exhausted precursor
population. Consistent mitochondrial dysfunction and redox stress
cause T cells into terminal exhaustion [111]. Autophagic flow
decreased in T cells after cecal ligation surgery (animal model of
sepsis) for 24 h, and deficient autophagy or mitophagy via knocking
out key autophagic molecules causes abnormal differentiation and
apoptosis in T cells, natural killer cells [112–114]. Mitophagy survives
effector CD4+ T cells by inhibiting the production of mTOR pathway-
dependent mROS [90]. The role of dendritic cells (DCs) is also
impaired in sepsis and the state of DCs positively correlated with the
level of PINK1-dependent mitophagy [115, 116]. The B cells in the
germinal center exhibit a highest mitophagy rate [117]. Furthermore,
enough autophagy, including mitophagy, is critical for formation of
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immune memory by promoting oxidative phosphorylation reversion
and decreasing ROS level and effector immunocytes apoptosis
[118–120]. This is meaningful for reducing risk of reinfection after
severe infection and increasing long-term survival rate.

Mitophagy participates in the self-regulation of inflammatory
pathways. Not only does the NLRP3 inflammasome inhibit
mitophagy to rapidly amplify anti-infective reactions, but some
inflammatory pathways also facilitate mitophagy to ensure appro-
priate host defense. Toll-like receptors (TLRs) bind their ligands, such
as LPS and mtDNA, and transduce signals inside to activate the NF-
κB pathway [121]. Along this pathway, NF-κB increases the
expression of p62, which recognizes ubiquitin-tagged mitochondria,
to promote mitophagy-mediated suppression of the NLRP3
inflammasome [122] (Fig. 2). MAVS acts as an autophagy receptor,
and TUFM binds ATG5-ATG12 to initiate mitophagy to degrade
MAVS, which is a self-regulation of the antiviral response [123, 124].
TANK binding kinase 1 (TBK1) is a critical kinase downstream of

the TLR3/7/8/9, RLR, and GAS-STING pathway, and it also positively
mediates autophagy process [125, 126]. On the one hand, active
TBK1 phosphorylates the transcription factor of interferon regulatory
factor-3, which induces the gene expression of type I IFN and
additional chemokines. On the other hand, TBK1 is recruited to the
OMM by NDP52 and OPTN. After its autophosphorylation and
activation, TBK1 phosphorylates binding sites between autophagy
adapters (NDP52, OPTN, p62, and Tax1 binding protein 1) and ATG8/
Ub to enhance their affinity. This positive feedback loop between
TBK1 and NDP52/OPTN accelerates the autophagy process
[127, 128]. ATG8 phosphorylation by TBK1 steadily binds on isolation
membrane [129]. TBK1 also facilitates NDP52 recruiting ULK1 to the
OMM [22]. Additionally, Rab7A phosphorylated by TBK1 promotes
ATG9A vesicle recruitment for autophagosome formation [130].
Thus, TBK1 is a self-limiter for inflammatory response. Furthermore,
another review gives an opinion that two pathways of TBK1
collectively contribute to kill intracellular pathogens. TBK1-
dependent autophagy/xenophagy activation plays major roles in

Fig. 2 Mitophagy interacts with the inflammatory cascade. A Mitochondria contribute to MAVS-induced anti-infective response. mtDNA
promotes interferon expression by cGAS-STING pathway. HPIV3, SARS-CoV2 and Hantavirus inhibit the role of MAVS to survive themselves.
B DAMPs derived from mitochondria induce apoptosis and pyroptosis in host cells by activating caspase 1/3/7. Mitophagy blocks
inflammatory pathway via scavenging mitochondria-derived DAMPs. TLR-NF-κB signaling promotes p62-dependent mitophagy to inhibit
mitochondria-dependent inflammation and cell death. TLRs also activate RIP1-RIP3 signaling to induce incomplete mitophagy and
necroptosis. cGAS-STING cyclic guanosine monophosphate–adenosine monophosphate synthase and stimulator of IFN genes. IRF interferon
regulatory factor, MAVS mitochondrial antiviral signaling protein, mtDNA mitochondrial DNA, dsDNA: double strand DNA, Cyt c Cytochrome c,
DAMPs danger-associated molecular patterns, RIP receptor interacting protein.
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antibacterial action and IFN response is an epiphenomenon [131].
Severe infection causes a breakdown of the equilibrium between

mitophagy and inflammation, and exact mechanisms remain
unknown. Intracellular pathogens and alteration of mitophagy-
associated gene expression may contribute to this unbalance. In the
last two years, researchers found that the necroptosis pathway
promoted incomplete mitophagy and increased the release of
mitochondrial components-containing exosomes, which was caused
by dysregulated binding of SNARE proteins on mitophagosomes
and lysosomes [96, 132].

Mitophagy protects organ function in sepsis
Sepsis represents a high metabolic state and one or several organ
malfunctions, partly caused by mitochondrial injury and insuffi-
cient mitophagy (Fig. 3).

Lung. Compared with alveolar type (AT) 1, AT2 rapidly coped
with mitochondrial damage by boosting mitophagy and mito-
chondrial biogenesis in the acute lung injury caused by
Staphylococcus aureus. Thus, AT2 resisted apoptosis more than
AT1 [133]. Severe pneumonia usually causes local or diffuse lung
fibrosis [134, 135], which is associated with a defect in PINK-
Parkin-dependent mitophagy. Thymosin β4 has antioxidant, anti-
inflammatory, and antifibrotic effects in LPS-induced lung fibrosis,
partly by promoting mitophagy to attenuate oxidative stress in
alveolar epithelial cells and fibroblasts [136].

Heart. In cardiomyocytes, LPS at a low dose generated an
increase in autophagic flow, followed by a decrease at high doses
[137]. SARS-CoV-2 infection induces acute myocarditis and cardiac
fibrosis, which is associated with its spike-1 protein stimulating the
NLRP3 inflammasome and oxidative stress by inhibiting mito-
phagy [138]. BECN1 acetylation contributes to autophagy
suppression, and melatonin protects the septic heart by enhan-
cing sirtuin1-mediated BECN1 deacetylation [139]. Exogenous
BECN1 suppresses mTOR signaling and promotes mitophagy to
attenuate sepsis-associated myocarditis [137]. Periplaneta amer-
icana extracts regulate LPS-induced cardiomyocyte injury via
PINK1-Parkin-dependent mitophagy [140].

Kidney. Renal tubular epithelial cells are also sensitive to poor
oxygen and nutrients. In septic shock, the kidney is compro-
mised with altered renal perfusion (hypovolaemia and high
central venous pressure) and immunological response. NLRP3
inflammasome activation impairs mitophagy in septic renal
tubule cells [141]. Insulin-like growth factor-binding protein
7 serves as a biomarker for sepsis-associated acute kidney injury
(SA-AKI) and contributes to the pathophysiology of SA-AKI via
dampening NIX-dependent mitophagy [142]. PINK1-Parkin-
OPTN axis and BNIP3-mediated mitophagy also promote tubular
cell survival [36, 143]. Recently, Deng and coworkers found that
melatonin was increased in SA-AKI and played a protective role
in septic renal tubule cells. They verified that melatonin

Fig. 3 The roles of mitophagy at the tissue and organ levels. Mitophagy inhibits organ dysfunctions, including brain, lung, heart, liver and
muscle weakness, and modulates immune cell differentiation. AT2 alveolar type 2, AMPK AMP-activated protein kinase, mTOR mechanistic
target of rapamycin.
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promoted mitophagy and maintained mitochondrial quality by
activating sirtuin-3-dependent deacetylation of transcription
factor A [144].

Other organs. The liver, which handles almost all nutrient and
drug metabolism, is easily damaged in sepsis. Blocking
autophagy accelerated mitochondrial dysfunction and apopto-
sis in hepatocytes. Mitophagy defect aggravates hepatocyte
apoptosis and mortality of septic mice [67, 145]. Sepsis-induced
hepatic injury presents cholestasis and elevation of aminotrans-
ferase. Bile acid retention obstructs the fusion of autophago-
somes with lysosomes in hepatocytes [146]. Obeticholic acid, a
drug used to treat primary biliary cirrhosis, also maintains bile
acid homeostasis in septic liver injury via improving autophagic
flux [147]. Sepsis-associated encephalopathy (SAE) is character-
ized by sterile inflammation and long-term cognitive impair-
ment. The expression of the stress-induced protein sestrin 2
increases in septic neurons, which protects against SAE by
activating AMPK pathway to promote neuronal autophagy [148].
Natural components fisetin and urolithin A have been shown to
alleviate inflammation in microglia and neurodegeneration by
activating mitophagy [149, 150]. Endothelial damage is a major
reason for microcirculatory dysfunction, microthrombosis, and
organ dysfunction. Neutrophil extracellular traps inhibit mito-
phagy by inducing FUNDC1 phosphorylation to lead to
endothelial ferroptosis, which can be reversed by urolithin A
[151].
However, skeletal muscles are highly catabolized to supply

nutrients for other key organs in critical illness, so septic patients
in hospital and after discharge often suffer muscle weakness
[152]. The autophagy pathway participates in protein break-
down [153, 154], resulting in loss of muscle mass and
strengthening. Leduc-Gaudet et al. found that Parkin over-
expression prevented sepsis-induced skeletal muscle atrophy,
which was partly explained by improving mitochondrial quality
and alleviating muscle inflammation [155]. Therefore, mitochon-
drial autophagy, in contrast to aggrephagy, may ameliorate
sepsis-associated myopathy.
In conclusion, defective mitophagy mainly contributes to

septic organ failure, whereas increased mitophagy protects
organ function by alleviating oxidative stress and apoptosis in
the cells.

Mitophagy regulates platelet functions
Platelet activation depends on energy and ROS supplied by rich
and healthy mitochondria. Thus, inducing mitophagy compromises
platelet activation [156, 157]. For example, hypoxic preconditioning
for activating mitophagy in the platelet protects against acute
ischemia/reperfusion-induced heart injury in mice [158].
Platelets, as a part of innate immune response, interact with

neutrophils and endothelial cells and result in immunothrombosis
after microorganisms invade [159, 160]. Local thrombi restrict
microorganisms to diffuse with sacrificing microcirculation perfu-
sion. Excessive thrombi are associated with severe illnesses, such
as acute respiratory distress syndrome induced by SARS-CoV-2
and sepsis [161–163]. Compared with septic survivors, platelets
from non-survivors showed a significant decrease in ATP and an
increase in mitochondrial permeabilization [164]. Mitochondrial
dysfunction promotes phosphatidylserine externalization of
plasma membrane, which greatly increases clotting tendency
and uncontrolled immunothrombosis [165]. Meanwhile, platelets
in the sepsis represented incomplete (mitochondrial) autophagy
due to LPS-TLR4 signaling blocking tether protein EPG5 (ectopic
P-granules autophagy protein 5 homolog) binding ATG8 [166].
Therefore, mitochondrial dysfunction and excessive thrombosis in
the severe infection are probably reversed by promoting
mitophagy.

DISCUSSION AND CONCLUSION
Severe infections are a result of multiple pathophysiologic disorders
caused by invading microorganisms. Host will suffer high metabolic
and mitochondrial damage during anti-infection. Therefore, cells
initiate mitophagy to eliminate injured mitochondria and compo-
nents to keep intracellular homeostasis, or they undergo intensive
proinflammatory reactions and mitochondria-related apoptosis.
Various regulators in cells lead to inadequate or incomplete
mitophagy, partly resulting in uncontrolled inflammation and organ
dysfunction. Thus, mitophagy disorder may be both the cause and
result of infection progress. And it is a critical factor for worsening
conditions to be determined.
The degrading disorder of mitophagosome is more obvious in

critical infections, but detailed mechanisms are not clear. Lysosome
dysfunction could explain part of this disorder [167, 168]. Gut
microbiome critically regulates immunoreaction in autoimmune
diseases and other diseases. Feng Li et al. found that intestinal
bacteria, especially Lactobacillus, could regulate microglia activation
in herpes simplex encephalitis via producing nicotinamide n-oxide to
induce NAD+-dependent mitophagy [169]. Urolithin A, a dietary
metabolite of the intestinal microbiota, has strong effect on anti-
inflammation and protecting mitochondrial health [170]. Thus,
intestinal flora imbalance might participate in mitophagy disorder
of severe infections. The negative regulating mechanisms for
mitophagy in other diseases, such as VAMP7B and Rab7A
disfunction, should be investigated in critical infections
[23, 57, 171, 172].
Reinstating proper mitophagy prevents hyperinflammation and

organ failure in severe infections and preserves anti-infective ability.
However, it is a challenge to find the right time and strength to
intervene mitophagy for balancing the function of anti-inflammation
(mitophagy) and pro-inflammation (mitochondria). Due to the yet-to-
be-determined intervention process, intricate pathophysiological
state of severe infection and no excluded confounding factor
(mitochondrial injury), it is likely to cause opposite conclusions about
the roles of mitophagy in the severe infection. New evaluation
methods of the whole mitophagy state should be established to
guide us in regulating mitophagy more scientifically. Extracellular
vesicles, containing mitochondrial components in circulation, may be
used as a biomarker to estimate mitophagy conditions in severe
infections [173].
Importantly, increasing mitophagy is not always beneficial due

to complicated functions of mitochondria. First, mitochondria
participate in direct and indirect ways to kill pathogens and
inhibiting mitophagy in the active macrophages is a physiological
process to increase phagocytosis ability and secretion of type I
IFN. Mitophagy cleans up proinflammatory pathway activators to
block anti-infective processes, which is prone to allow infection to
spread. Sometimes, mitophagy is hijacked by intracellular patho-
gens to finish their lifecycle. Thus, promoting mitophagy may do
harm to bodies at early stage of infection [116, 174–176]. Second,
there is a close relationship between mitophagy and mitochon-
drial apoptosis and E3 ligase Parkin can be a converter of them
[177]. Several pro-apoptotic and anti-apoptotic proteins are also
autophagy receptors to initiate mitophagy. Pro-apoptotic BAX-
BAK oligomers induced mitophagy to inhibit unwanted inflamma-
tion. Thus, they work together to minimize the damage. But there
is a potential risk that external mitophagy enhancers undermine
this fine coordination. A study published in Immunity journal
pointed out that decreasing apoptosis of effector immunocytes,
which alleviates immunosuppression in the sepsis, potentially
promote lung fibrosis after acute lung injury via incresing long-
lived macrophages-derived TGF-β1 [178]. Third, excessive and
unnecessary mitophagy without corresponding mitochondrial
biogenesis also causes inadequate ATP production and induces
cell death. Mitophagy-induced cell death is a high-profile method
to treat malignant tumors, but it is not a good thing for applying
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mitophagy inducers into other diseases, such as severe infections
[179].
The pathway, flux, and roles of mitophagy are different in different

cells, organs, and severe infection stages. Based on its features and
potential risks, some basic principles we suggest should be complied
for mitophagy inducers applying to non-malignant diseases: 1) High
selectivity for injured mitochondria, target cells, and organs.
Nanoparticles, such as extracellular vesicles, have good targeting
ability with or without artificial modification and can possibly be used
as medicine carriers to satisfy precise modulation of mitophagy in
severe infections [180]. And according to the theory of autophagy-
tethering compounds (ATTECs) [179], some molecules, which are
normally inside the mitochondria and exposed to the cytoplasm
once mitochondria dysfunction, may be fit as the binding sites for
ATTEC, such as cardiolipin and prohibitin 2. 2) Promoting mitophagy
without injuring mitochondria, such as UMI-77 and mito-ATTEC. 3)
Appropriate dosage and efficacy of inducers to avoid lethal
mitophagy [179, 181].
Aside from macromitophagy and micromitophagy, mitochondrial

quality control includes mitochondrial dynamics and mitochondrial
biogenesis. Tree of them cooperate mutually to maintain mitochon-
drial homeostasis—mitochondrial fission assists mitophagy in
selective elimination of injured parts, and harmful components are
diluted after injured mitochondria fuse with healthy ones. Timely
biogenesis of mitochondria is needed to maintain the cellular energy
supply [182]. It is reported that PGC-1α/NRF1 raised the expression of
FUNDC1 to simultaneously promote mitophagy and mitochondrial
biogenesis to maintain mitochondrial functions [183]. Thus, mito-
phagy inducers with the bioactivity of promoting mitochondrial
biogenesis potentially recover mitochondrial functions in severe
infections better, such as resveratrol, melatonin, urolithin A and
berberine [5, 32, 184–186].
In conclusion, mitochondria with mitophagy have complicated

roles in regulating the functions of cells and organs (Fig. 4).
Promoting mitophagy at proper time helps to prevent and treat

severe infections. But before its clinical application, there are many
issues to be addressed.
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