Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cGAS-Ku80 complex regulates the balance between two end joining subpathways

Abstract

As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS promotes c-NHEJ and suppresses alt-NHEJ.
Fig. 2: cGAS increases DNA-PKcs protein stability.
Fig. 3: cGAS promotes USP7-mediated DNA-PKcs deubiquitination and stabilization.
Fig. 4: cGAS interacts with Ku80 to promote USP7-mediated stabilization of DNA-PKcs.
Fig. 5: cGAS inhibits the transcription of Polθ.
Fig. 6: cGAS inhibits alt-NHEJ by suppressing Polθ transcription in a Ku80-dependent manner.

Similar content being viewed by others

Data availability

All data is contained within the manuscript and/or supplementary files. The original western blot images are provided in the Supplementary File.

References

  1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  3. Drouet J, Frit P, Delteil C, de Villartay JP, Salles B, Calsou P. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends. J Biol Chem. 2006;281:27784–93.

    Article  CAS  PubMed  Google Scholar 

  4. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006;124:301–13.

    Article  CAS  PubMed  Google Scholar 

  5. Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol. 2000;20:2996–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18:495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. 2010;38:5706–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, et al. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63:662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, Tomida J, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 2014;10:e1004654.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem. 2018;293:10536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wood RD, Doublie SDN. A polymerase theta (POLQ), double-strand break repair, and cancer. DNA Repair (Amst). 2016;44:22–32.

    Article  CAS  PubMed  Google Scholar 

  12. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature. 2015;518:254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mateos-Gomez PA, Kent T, Deng SK, McDevitt S, Kashkina E, Hoang TM, et al. The helicase domain of Poltheta counteracts RPA to promote alt-NHEJ. Nat Struct Mol Biol. 2017;24:1116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinstock DM, Brunet E, Jasin M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol. 2007;9:978–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma JL, Kim EM, Haber JE, Lee SE. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol. 2003;23:8820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc Natl Acad Sci USA. 2007;104:20902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corneo B, Wendland RL, Deriano L, Cui X, Klein IA, Wong SY, et al. Rag mutations reveal robust alternative end joining. Nature. 2007;449:483–6.

    Article  CAS  PubMed  Google Scholar 

  18. Thyme SB, Schier AF. Polq-mediated end joining is essential for surviving DNA double-strand breaks during early zebrafish development. Cell Rep. 2016;15:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortizas EM, Zahn A, Hajjar ME, Patenaude AM, Di Noia JM, Verdun RE. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination. J Immunol. 2013;191:5751–63.

    Article  CAS  PubMed  Google Scholar 

  20. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell. 2013;49:858–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Daley JM, Sung P. RIF1 in DNA break repair pathway choice. Mol Cell. 2013;49:840–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20:954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49:872–83.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao F, Kim W, Gao H, Liu C, Zhang Y, Chen Y, et al. ASTE1 promotes shieldin-complex-mediated DNA repair by attenuating end resection. Nat Cell Biol. 2021;23:894–904.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 53BP1 regulates DSB repair using Rif1 to control 5’ end resection. Science. 2013;339:700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daley JM, Sung P. To cut or not to cut: discovery of a novel regulator of DNA break resection. Mol Cell. 2016;61:325–6.

    Article  CAS  PubMed  Google Scholar 

  27. Longhese MP, Bonetti D, Manfrini N, Clerici M. Mechanisms and regulation of DNA end resection. EMBO J. 2010;29:2864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol. 2016;51:195–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Falco M, De Felice M. Take a break to repair: a dip in the world of double-strand break repair mechanisms pointing the gaze on archaea. Int J Mol Sci. 2021;22.

  30. Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst). 2014;17:81–97.

    Article  CAS  PubMed  Google Scholar 

  31. Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293:10502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med. 2010;207:855–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen L, Nievera CJ, Lee AY, Wu X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 2008;283:7713–20.

    Article  CAS  PubMed  Google Scholar 

  34. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Zhang H, Xu Z, Tang H, Geng A, Cai B, et al. A PARP1-BRG1-SIRT1 axis promotes HR repair by reducing nucleosome density at DNA damage sites. Nucleic Acids Res. 2019;47:8563–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34:6170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30.

    Article  CAS  PubMed  Google Scholar 

  39. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.

    Article  PubMed  Google Scholar 

  40. Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol. 2014;88:5328–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen H, Chen H, Zhang J, Wang Y, Simoneau A, Yang H, et al. cGAS suppresses genomic instability as a decelerator of replication forks. Sci Adv. 2020;6.

  42. Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS, et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science. 2020;369:823–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019;38:e102718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563:131–6.

    Article  CAS  PubMed  Google Scholar 

  45. Yang H, Wang H, Ren J, Chen Q, Chen ZJ. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 2017;114:E4612–E20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell. 2019;178:302–15.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, et al. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell. 2018;175:488–501.e22.

    Article  CAS  PubMed  Google Scholar 

  48. Ma D, Yang M, Wang Q, Sun C, Shi H, Jing W, et al. Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response. Sci Adv. 2021;7.

  49. Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008;4:e1000110.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao Z, Seluanov A, Jiang Y, Gorbunova V. TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proc Natl Acad Sci USA. 2007;104:13068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Zhang W, Chen Y, Guo W, Zhang J, Tang H, et al. Impaired DNA double-strand break repair contributes to the age-associated rise of genomic instability in humans. Cell Death Differ. 2016;23:1765–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho SR, Mahanic CS, Lee YJ, Lin WC. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc Natl Acad Sci USA. 2014;111:E2646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, et al. Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem. 2017;292:13296–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tao X, Song J, Song Y, Zhang Y, Yang J, Zhang P, et al. Ku proteins promote DNA binding and condensation of cyclic GMP-AMP synthase. Cell Rep. 2022;40:111310.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou J, Gelot C, Pantelidou C, Li A, Yucel H, Davis RE, et al. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors. Nat Cancer. 2021;2:598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhen Z, Chen Y, Wang H, Tang H, Zhang H, Liu H, et al. Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation. Nat Commun. 2023;14:8217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18:99–113.

    Article  CAS  PubMed  Google Scholar 

  60. Kienker LJ, Shin EK, Meek K. Both V(D)J recombination and radioresistance require DNA-PK kinase activity, though minimal levels suffice for V(D)J recombination. Nucleic Acids Res. 2000;28:2752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niewolik D, Schwarz K. Physical ARTEMIS:DNA-PKcs interaction is necessary for V(D)J recombination. Nucleic Acids Res. 2022;50:2096–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alikarami F, Safa M, Faranoush M, Hayat P, Kazemi A. Inhibition of DNA-PK enhances chemosensitivity of B-cell precursor acute lymphoblastic leukemia cells to doxorubicin. Biomed Pharmacother. 2017;94:1077–93.

    Article  CAS  PubMed  Google Scholar 

  63. Liu Y, Zhang L, Liu Y, Sun C, Zhang H, Miao G, et al. DNA-PKcs deficiency inhibits glioblastoma cell-derived angiogenesis after ionizing radiation. J Cell Physiol. 2015;230:1094–103.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Xu H, Liu T, Huang M, Butter PP, Li C, et al. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight. 2018;3.

  65. Sun X, Liu T, Zhao J, Xia H, Xie J, Guo Y, et al. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat Commun. 2020;11:6182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koike M, Ikuta T, Miyasaka T, Shiomi T. Ku80 can translocate to the nucleus independent of the translocation of Ku70 using its own nuclear localization signal. Oncogene. 1999;18:7495–505.

    Article  CAS  PubMed  Google Scholar 

  67. Koike M, Shiomi T, Koike A. Dimerization and nuclear localization of ku proteins. J Biol Chem. 2001;276:11167–73.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang H, Cai B, Geng A, Tang H, Zhang W, Li S, et al. Base excision repair but not DNA double-strand break repair is impaired in aged human adipose-derived stem cells. Aging Cell. 2020;19:e13062.

    Article  CAS  PubMed  Google Scholar 

  69. Sharif H, Li Y, Dong Y, Dong L, Wang WL, Mao Y, et al. Cryo-EM structure of the DNA-PK holoenzyme. Proc Natl Acad Sci USA. 2017;114:7367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu Y, Tan R, Ren Q, Gao B, Sheng Z, Zhang J, et al. POT1 inhibits the efficiency but promotes the fidelity of nonhomologous end joining at non-telomeric DNA regions. Aging (Albany NY). 2017;9:2529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jiemin Wong and Jialun Li (East China Normal University, Shanghai, China) for generously providing the Flag-USP7 and Flag-USP7m plasmids. We thank Dr. Haiying Wang (Peking University Health Science Center, Beijing, China) for providing the GST-USP7, GST-USP7-TRAF, GST-USP7-CAT, GST-USP7-UBL and HA-USP7 plasmids. We thank Dr. Yanhui Xu and Xiaotong Yin (Fudan University, Shanghai, China) for their generous provision of DNA-PKcs proteins, KU70/80 proteins and P53 proteins.

Funding

This work was supported by the National Key R&D Program of China (grant numbers 2021YFA1102003 and 2022YFA1103703 to Z.M.) and the National Natural Science Foundation of China (grant numbers 32171288 to Y.J., 82225017, 32270750 and 82071565 to Z.M., and 82101634 to H.Z.), and the Shanghai Sailing Program (21YF1435900 to H.Z.).

Author information

Authors and Affiliations

Authors

Contributions

HZ, ZM, YJ and GW conceived the project, designed the experiments, and wrote the paper. HZ and LJ performed most of the experiments and analyzed the data. ZQ and XD assisted with the acquisition of data.

Corresponding authors

Correspondence to Guizhu Wu, Ying Jiang or Zhiyong Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, L., Du, X. et al. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01296-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01296-4

Search

Quick links