Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization

Abstract

The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells’ epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue repair and carcinomas share multiple cellular phenotypes and epigenetic mechanisms.
Fig. 2: Epigenetic mechanisms of wound and inflammatory memories.
Fig. 3: Wound memory represents an early epigenetic field cancerization.

Similar content being viewed by others

References

  1. Rivera CM, Ren B. Mapping Human Epigenomes. Cell 2013;155:39–55.

    Article  PubMed  CAS  Google Scholar 

  2. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Waddington CH. The epigenotype. Int J Epidemiol. 2012;41:10–3.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669–81.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:1–39.

    Google Scholar 

  6. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    Article  PubMed  CAS  Google Scholar 

  7. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25:403–18.

    Article  PubMed  CAS  Google Scholar 

  9. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017;357:eaal2380.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8:a019521.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell. 2015;16:465–76.

    Article  PubMed  CAS  Google Scholar 

  12. Blanpain C, Fuchs E. Plasticity of epithelial stem cells in tissue regeneration. Science 2014;344:1242281.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev. 2022;75:101948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sun X, Joost S, Kasper M. Plasticity of epithelial cells during skin wound healing. Cold Spring Harb Perspect Biol. 2023;15:a041232.

    Article  PubMed  Google Scholar 

  15. Katsuyama T, Paro R. Epigenetic reprogramming during tissue regeneration. FEBS Lett. 2011;585:1617–24.

    Article  PubMed  CAS  Google Scholar 

  16. Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, et al. Landscape of the epigenetic regulation in wound healing. Front Physiol. 2022;13:949498.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Flier JS, Underhill LH, Dvorak HF. Tumors: wounds that do not heal. Similarities tumor Strom Gener wound healing N. Engl J Med. 1986;315:1650–9.

    Google Scholar 

  18. Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12:170–80.

    Article  PubMed  CAS  Google Scholar 

  19. Ge Y, Fuchs E. Stretching the limits: From homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet. 2018;19:311–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. MacCarthy-Morrogh L, Martin P. The hallmarks of cancer are also the hallmarks of wound healing. Sci Signal. 2020;13:eaay8690.

    Article  PubMed  CAS  Google Scholar 

  21. Kang S, Chovatiya G, Tumbar T. Epigenetic control in skin development, homeostasis and injury repair. Exp Dermatol. 2019;28:453–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shibata S. Chromatin dynamics and epigenetics in skin stress adaptation. J Dermatol Sci. 2021;103:66–72.

    Article  PubMed  CAS  Google Scholar 

  23. Noodleman FR, Pollack SV. Trauma as a possible etiologic factor in basal cell carcinoma. J Dermatol Surg Oncol. 1986;12:841–6.

    Article  PubMed  CAS  Google Scholar 

  24. Özyazgan I, Kontaş O. Previous injuries or scars as risk factors for the development of basal cell carcinoma. Scand J Plast Reconstr Surg Hand Surg. 2004;38:11–5.

    Article  PubMed  Google Scholar 

  25. Hartnett L, Egan LJ. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 2012;33:723–31.

    Article  PubMed  CAS  Google Scholar 

  26. Valenzuela MA, Canales J, Corvalán AH, Quest AFG. Helicobacter pylori -induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol WJG Press. 2015;21:12742–56.

    Article  CAS  Google Scholar 

  27. Ruggiero P. Helicobacter pylori and inflammation. Curr Pharm Des. 2010;16:4225–36.

    Article  PubMed  CAS  Google Scholar 

  28. Walter ND, Rice PL, Redente EF, Kauvar EF, Lemond L, Aly T, et al. Wound healing after trauma may predispose to lung cancer metastasis: review of potential mechanisms. Am J Respir Cell Mol Biol. 2011;44:591–6.

    Article  PubMed  CAS  Google Scholar 

  29. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018;18:19–32.

  30. Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer. 2023;23:710–24.

    Article  PubMed  CAS  Google Scholar 

  31. Ordovas-Montanes J, Beyaz S, Rakoff-Nahoum S, Shalek AK. Distribution and storage of inflammatory memory in barrier tissues. Nat Rev Immunol. 2020;20:308–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Naik S, Fuchs E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 2022;607:249–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Del Poggetto E, Ho IL, Balestrieri C, Yen EY, Zhang S, Citron F, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 2021;373:eabj0486.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Falvo DJ, Grimont A, Zumbo P, Yang JL, Osterhoudt A, Pan G, et al. An epigenetic memory of inflammation controls context-dependent lineage plasticity in the pancreas. bioRxiv. 2022;2021.11.01.466807.

  35. Alonso-Curbelo D, Ho YJ, Burdziak C, Maag JLV, Morris JP, Chandwani R, et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 2021;590:642–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Levra Levron C, Watanabe M, Proserpio V, Piacenti G, Lauria A, Kaltenbach S, et al. Tissue memory relies on stem cell priming in distal undamaged areas. Nat Cell Biol. 2023;25:740–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dvorak HF. Tumors: Wounds that do not heal-Redux. Cancer. Immunol Res. 2015;3:1.

    CAS  Google Scholar 

  38. Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol. 2021;30:529–45.

    Article  PubMed  CAS  Google Scholar 

  39. Lambert AW, Weinberg RA, Linking EMT. programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 2021;21:325–38.

    Article  PubMed  CAS  Google Scholar 

  40. Leopold PL, Vincent J, Wang H. A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol. 2012;22:471–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;19:1438–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, et al. Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition. J Clin Invest. 2022;132:e157279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  44. Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, et al. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 2015;6:130–43.

    Article  PubMed  Google Scholar 

  45. Konieczny P, Xing Y, Sidhu I, Subudhi I, Mansfield KP, Hsieh B, et al. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 2022;377:eabg9302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, et al. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med. 2018;10:eaap8798.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siegle JM, Basin A, Sastre-Perona A, Yonekubo Y, Brown J, Sennett R, et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun. 2014;5:4511.

    Article  PubMed  CAS  Google Scholar 

  48. Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, et al. SOX2 Is the Determining Oncogenic Switch in Promoting Lung Squamous Cell Carcinoma from Different Cells of Origin. Cancer Cell. 2016;30:519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu Z, Zhou J, Zhang X, Zhang Z, Xie Y, Liu Jbin, et al. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nat Genet. 2021;53:881–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cangkrama M, Wietecha M, Werner S. Wound repair, scar formation, and cancer: converging on activin trends in molecular medicine. Trends Mol Med. 2020;26:1107–17.

    Article  PubMed  CAS  Google Scholar 

  51. Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9:628–38.

    Article  PubMed  Google Scholar 

  52. Lafave LM, Savage RE, Buenrostro JD. Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. Annu Rev Cancer Biol. 2022;6:167–85.

    Article  Google Scholar 

  53. Della Chiara G, Gervasoni F, Fakiola M, Godano C, D’Oria C, Azzolin L, et al. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nature. Communications 2021;12:1–18.

    Google Scholar 

  54. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  55. Ge Y, Gomez NC, Adam RC, Yuan S, Elemento O, Fuchs E. Stem cell lineage infidelity drives wound repair and cancer. Cell. 2017;169:636–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Vezzani B, Carinci M, Previati M, Giacovazzi S, Della Sala M, Gafà R, et al. Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers MDPI. 2022;14:1221.

    Article  CAS  Google Scholar 

  57. Kang S, Long K, Wang S, Sada A, Tumbar T. Histone H3 K4/9/27 Trimethylation Levels Affect Wound Healing and Stem Cell Dynamics in Adult Skin. Stem Cell Rep. 2020;14:34–48.

    Article  CAS  Google Scholar 

  58. Grinat J, Heuberger J, Vidal RO, Goveas N, Kosel F, Berenguer-Llergo A, et al. The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nat Commun. 2020;11:6422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kimball AS, Joshi A, Carson WF, Boniakowski AE, Schaller M, Allen R, et al. The Histone Methyltransferase MLL1 Directs Macrophage-Mediated Inflammation in Wound Healing and Is Altered in a Murine Model of Obesity and Type 2 Diabetes. Diabetes 2017;66:2459–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer. 2020;11:3349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, et al. SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif. 2021;54:e13045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su I-hsin, Hannon G. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chiacchiera F, Rossi A, Jammula S, Zanotti M, Pasini D. PRC2 preserves intestinal progenitors and restricts secretory lineage commitment. EMBO J. 2016;35:2301–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shaw T, Martin P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 2009;10:881–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer. 2016;16:803–10.

    Article  PubMed  CAS  Google Scholar 

  66. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH. et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling. Cancer Cell. 2011;19:86–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xue C, Wang K, Jiang X, Gu C, Yu G, Zhong Y, et al. The Down-Regulation of SUZ12 Accelerates the Migration and Invasion of Liver Cancer Cells via Activating ERK1/2 Pathway. J Cancer. 2019;10:1375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-Mediated Transcriptional Repression. Mol Cell. 2020;77:840–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cohen I, Zhao D, Menon G, Nakayama M, Koseki H, Zheng D, et al. PRC1 preserves epidermal tissue integrity independently of PRC2. Genes Dev. 2019;33:55–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nascimento-Filho CHV, Silveira EJD, Goloni-Bertollo EM, De Souza LB, Squarize CH, Castilho RM. Skin wound healing triggers epigenetic modifications of histone H4. J Transl Med. 2020;18:138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  PubMed  CAS  Google Scholar 

  72. Qiang L, Sample A, Liu H, Wu X, He YY. Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep.7:1–10.

  73. Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17:551–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 2017;543:72–7.

    Article  PubMed  CAS  Google Scholar 

  75. Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol. 2011;11:478–88.

    Article  PubMed  CAS  Google Scholar 

  76. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20.

    Article  PubMed  CAS  Google Scholar 

  77. Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2012;38:23–38.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lauria A, Meng G, Proserpio V, Rapelli S, Maldotti M, Polignano IL, et al. DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells. Nat Commun. 2023;14:1–18.

    Article  Google Scholar 

  79. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 2010;463:563–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers (Basel). 2020;12:1–22.

    Article  Google Scholar 

  81. Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Luo G, Jing X, Yang S, Peng D, Dong J, Li L, et al. DNA Methylation Regulates Corneal Epithelial Wound Healing by Targeting miR-200a and CDKN2B. Invest Ophthalmol Vis Sci. 2019;60:650–60.

    Article  PubMed  CAS  Google Scholar 

  83. Yan J, Tie G, Wang S, Tutto A, Demarco N, Khair L, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 2018;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhao C, Yang Q, Tang R, Li W, Wang J, Yang F. et al. DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation. npj Regen Med. 2023;8:1–17.

    Article  Google Scholar 

  85. Zhao J, Yang S, Shu B, Chen L, Yang R, Xu Y, et al. Transient High Glucose Causes Persistent Vascular Dysfunction and Delayed Wound Healing by the DNMT1-Mediated Ang-1/NF-κB Pathway. J Investig Dermatol. 2021;141:1573–84.

    Article  PubMed  CAS  Google Scholar 

  86. Bhatt T, Dey R, Hegde A, Ketkar AA, Pulianmackal AJ, Deb AP, et al. Initiation of wound healing is regulated by the convergence of mechanical and epigenetic cues. PLoS Biol. 2022;20:e3001777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Leonard S, Pereira M, Fox R, Gordon N, Yap J, Kehoe S, et al. Over-expression of DNMT3A predicts the risk of recurrent vulvar squamous cell carcinomas. Gynecol Oncol. 2016;143:414–20.

    Article  PubMed  CAS  Google Scholar 

  88. Rinaldi L, Avgustinova A, Martín M, Datta D, Solanas G, Neus P, et al. Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. Elife 2017;6:e21697.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yan F, Shen N, Pang J, Xie D, Deng B, Molina JR, et al. Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis. 2014;5:e1413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D, et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA. 2011;108:18061–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Huang R, Wang Y, Ge H, Wang D, Wang Y, Zhang W, et al. Restoration of TET2 deficiency inhibits tumor growth in head neck squamous cell carcinoma. Ann Transl Med. 2020;8:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhou L, Ren M, Zeng T, Wang W, Wang X, Hu M, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death Dis. 2019;10:1–13.

    Article  Google Scholar 

  94. Wilson ER, Helton NM, Heath SE, Fulton RS, Payton JE, Welch JS, et al. Focal disruption of DNA methylation dynamics at enhancers in IDH-mutant AML cells. Leukemia 2021;36:935–45.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol. 2016;937:3–17.

    Article  PubMed  CAS  Google Scholar 

  96. Luan A, Hu MS, Leavitt T, Brett EA, Wang KC, Longaker MT, et al. Noncoding RNAs in Wound Healing: A New and Vast Frontier. Adv Wound Care (N. Rochelle). 2018;7:19–27.

    Article  Google Scholar 

  97. Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. 2022.

  98. Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018;285:4516–34.

    Article  PubMed  CAS  Google Scholar 

  99. Sun Y, Ma L. New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel). 2019;11:216.

    Article  PubMed  CAS  Google Scholar 

  100. Liang ZH, Pan YC, Lin SS, Qiu ZY, Zhang Z. LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis. Regen Ther. 2020;15:202.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. Int J Biol Sci. 2021;17:3188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yu P, Guo J, Li J, Shi X, Xu N, Jiang Y, et al. lncRNA-H19 in Fibroblasts Promotes Wound Healing in Diabetes. Diabetes 2022;71:1562–78.

    Article  PubMed  CAS  Google Scholar 

  103. Tamagawa S, Beder LB, Hotomi M, Gunduz M, Yata K, Grenman R, et al. Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int J Mol Med. 2014;33:879–86.

    Article  PubMed  CAS  Google Scholar 

  104. Sulaiman SA, Ab Mutalib NS, Jamal R. miR-200c Regulation of Metastases in Ovarian Cancer: Potential Role in Epithelial and Mesenchymal Transition. Front Pharm. 2016;7:271.

    Article  Google Scholar 

  105. Aunin E, Broadley D, Ahmed MI, Mardaryev AN, Botchkareva NV. Exploring a Role for Regulatory miRNAs In Wound Healing during Ageing: Involvement of miR-200c in wound repair. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  106. Stojadinovic O, Ramirez H, Pastar I, Gordon KA, Stone R, Choudhary S, et al. MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Arch Dermatol Res. 2017;309:133–9.

    Article  PubMed  CAS  Google Scholar 

  107. Arantes LMRB LausAC, Melendez ME, deCarvalho AC, Sorroche BP, De Marchi PRM. et al. MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget. 2017;8:9911–21.

    Article  PubMed  Google Scholar 

  108. Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 2014;35:1162–71.

    Article  PubMed  CAS  Google Scholar 

  109. Wang T, Feng Y, Sun H, Zhang L, Hao L, Shi C, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol. 2012;181:1911–20.

    Article  PubMed  Google Scholar 

  110. Li D, Li X, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, et al. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. J Invest Dermatol. 2015;135:1676–85.

    Article  PubMed  CAS  Google Scholar 

  111. Wilkinson E, Cui YH, He YY. Roles of RNA Modifications in Diverse Cellular Functions. Front Cell Dev Biol. 2022;10:828683.

  112. Luo G, Xu W, Chen X, Xu W, Yang S, Wang J, et al. The RNA m5C Methylase NSUN2 Modulates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci. 2023;64:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells NLM (Medlin). 2020;9:1758.

    Article  CAS  Google Scholar 

  114. Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol. 2006;16:971–81.

    Article  PubMed  CAS  Google Scholar 

  115. Zhou J, Wei T, He Z. ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m6A modification to improve wound healing of diabetic foot ulcers. Mol Med. 2021;27:146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y, et al. RNA m6A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 2019;12:9143–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–9.

    Article  PubMed  CAS  Google Scholar 

  118. Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J, et al. RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology 2021;160:1284–300.

    Article  PubMed  CAS  Google Scholar 

  119. Arango D, Sturgill D, Alhusaini N, Meier JL, Coller J, Oberdoerffer S, et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency. Cell 2018;175:1872–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Xie L, Zhong X, Cao W, Liu J, Zu X, Chen L. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther Nucleic Acids. 2023;32:359–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liao L, He Y, Li SJ, Yu XM, Liu ZC, Liang YY, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023;33:355–71.

    Article  PubMed  CAS  Google Scholar 

  122. Wang B, Zhang J, Li G, Xu C, Yang L, Zhang J, et al. N-acetyltransferase 10 promotes cutaneous wound repair via the NF-κB-IL-6 axis. Cell Death. Discovery 2023;9:1–10.

    Google Scholar 

  123. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fine JD, Johnson LB, Weiner M, Li KP, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986-2006. J Am Acad Dermatol. 2009;60:203–11.

    Article  PubMed  Google Scholar 

  125. Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA. 2011;108:4093–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kasper M, Jaks V, Are A, Bergström Å, Schwäger A, Barker N, et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci USA. 2011;108:4099–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Higa T, Okita Y, Matsumoto A, Nakayama S, Oka T, Sugahara O, et al. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nat Commun. 2022;13:1500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Schütte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma-epidemiological trends and risk factors. Dig Dis. 2009;27:80–92.

    Article  PubMed  Google Scholar 

  129. Riordan JD, Feddersen CR, Tschida BR, Beckmann PJ, Keng VW, Linden MA, et al. Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma. Hepatology 2018;67:924.

    Article  PubMed  CAS  Google Scholar 

  130. Divangahi M, Aaby P, Abdul Khader S, Barreiro LB, Bekkering S, Chavakis T, et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol. 2021;22:2–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kinoshita T, Seki M. Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 2014;55,1859–63.

  132. Tehrani SSH, Kogan A, Mikulski P, Jansen LET. Remembering foods and foes: emerging principles of transcriptional memory. Cell Death Differ. 2023;1–11.

  133. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, et al. Inflamm Mem sensitizes Ski Epithel stem cells tissue damage. 2017;550:475–80.

    CAS  Google Scholar 

  135. Larsen SB, Cowley CJ, Sajjath SM, Barrows D, Yang Y, Carroll TS, et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell. 2021;28:1758–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Gonzales KAU, Polak L, Matos I, Tierney MT, Gola A, Wong E, et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 2021;374:eabh2444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 2018;560:649–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lim AI, McFadden T, Link VM, Han SJ, Karlsson RM, Stacy A, et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 2021;373:eabf3002.

    Article  PubMed  CAS  Google Scholar 

  139. Levra Levron C, Donati G. Multiplicity of stem cell memories of inflammation and tissue repair in epithelia. Trends Cell Biol. 2023;34:3–6.

  140. Proserpio V, Oliviero S, Donati G. Locked and Loaded: Inflammation Training Prepares Skin Epithelial Stem Cells for Trauma. Cell Stem Cell. 2017;21:715–7.

    Article  PubMed  CAS  Google Scholar 

  141. Halper-Stromberg A, Jabri B. Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol. 2022;23:1675–86.

    Article  PubMed  CAS  Google Scholar 

  142. Kadur Lakshminarasimha Murthy P, Xi R, Arguijo D, Everitt JI, Kocak DD, Kobayashi Y, et al. Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity. Dev Cell. 2022;57:310–28.

    Article  PubMed  CAS  Google Scholar 

  143. Mathilde Latil A, Nassar D, Beck B, Declercq W, Yi R, Blanpain C, et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell. 2017;20:191–204.

    Article  PubMed  Google Scholar 

  144. Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, et al. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol. 2015;28:14–29.

    Article  PubMed  Google Scholar 

  145. Solé‐Boldo L, Raddatz G, Gutekunst J, Gilliam O, Bormann F, Liberio MS, et al. Differentiation-related epigenomic changes define clinically distinct keratinocyte cancer subclasses. Mol Syst Biol. 2022;18:e11073.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Slaughter DP, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Clin Implic multicentric Orig Cancer. 1953;6:963–8.

    CAS  Google Scholar 

  147. Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A Genetic Explanation of Slaughter’s Concept of Field Cancerization: Evidence and Clinical Implications 1. Cancer Res.2023;63:1727–30.

  148. Alcolea MP, Greulich P, Wabik A, Frede J, Simons BD, Jones PH. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol. 2014;16:612–9.

    Article  Google Scholar 

  149. Braakhuis BJM, Leemans CR, Brakenhoff RH. A genetic progression model of oral cancer: Current evidence and clinical implications. J Oral Pathol Med Blackwell Publ Ltd. 2004;33:317–22.

    Article  CAS  Google Scholar 

  150. Sinjab A, Han G, Wang L, Kadara H. Field carcinogenesis in cancer evolution: What the cell is going on? Cancer Res. 2020;80:4888–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Katsurano M, Niwa T, Yasui Y, Shigematsu Y, Yamashita S, Takeshima H, et al. Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T-and B-cells in DNA methylation induction. Oncogene 2012;31:342–51.

    Article  PubMed  CAS  Google Scholar 

  152. Nishiyama N, Arai E, Chihara Y, Fujimoto H, Hosoda F, Shibata T, et al. Genome-wide DNA methylation profiles in urothelial carcinomas and urothelia at the precancerous stage. Cancer Sci. 2010;101:231–40.

    Article  PubMed  CAS  Google Scholar 

  153. Baba Y, Ishimoto T, Kurashige J, Iwatsuki M, Sakamoto Y, Yoshida N, et al. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 2016;375:360–6.

  154. Makabe T, Arai E, Hirano T, Ito N, Fukamachi Y, Takahashi Y, et al. Genome-wide DNA methylation profile of early-onset endometrial cancer: Its correlation with genetic aberrations and comparison with late-onset endometrial cancer. Carcinogenesis 2019;40:611–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bernstein C. Epigenetic field defects in progression to cancer. World J Gastrointest Oncol. 2013;5:43.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ramachandran K, Singal R. DNA methylation and field cancerization. Epigenomics 2012;4:243–5.

    Article  PubMed  CAS  Google Scholar 

  157. Španko M, Strnadová K, Pavlíček AJ, Szabo P, Kodet O, Valach J, et al. Il-6 in the ecosystem of head and neck cancer: Possible therapeutic perspectives. Int J Mol Sci. 2021;22:11027.

  158. Wang J, He J, Zhu M, Han Y, Yang R, Liu H, et al. Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Rev Rep. 2022;18:1912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Whitson RJ, Oro AE. Soil primes the seed: epigenetic landscape drives tumor behavior. Cell Stem Cell. 2017;20:149–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Lyko F. Distal memory in wound healing and cancer. Nat Cell Biol. 2023;25:631–2.

    Article  PubMed  CAS  Google Scholar 

  161. Donati G. The niche in single-cell technologies. Immunol Cell Biol. 2016;94:250–5.

    Article  PubMed  CAS  Google Scholar 

  162. Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;2023:1–19.

    Google Scholar 

  163. Toninelli M, Rossetti G, Pagani M. Charting the tumor microenvironment with spatial profiling technologies. Trends Cancer. 2023;9:1085-96.

  164. Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight. 2018;3:e99911.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ghahramani A, Donati G, Luscombe NM, Watt FM. Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells. Genome Biol. 2018;19:1–14.

    Article  Google Scholar 

  166. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet. 2020;22:71–88.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Van Hove L, Lecomte K, Roels J, Vandamme N, Vikkula H, Hoorens I, et al. Fibrotic enzymes modulate wound-induced skin tumorigenesis. EMBO Rep. 2021;22:e51573.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hoste E, Arwert EN, Lal R, South AP, Salas-Alanis JC, Murrell DF, et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat Commun. 2015;6:5932.

    Article  PubMed  CAS  Google Scholar 

  169. Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 2012;149:1207–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Apologies to authors whose work could not be included due to space constraints. The Donati laboratory is supported by the Chan Zuckerberg Initiative (Single-Cell Analysis of Inflammation, Id. DAF2020-217532, https://doi.org/10.37921/173068fmftmj) and by AIRC, Associazione Italiana per la Ricerca sul Cancro (MFAG 2018 - Id. 21640).

Author information

Authors and Affiliations

Authors

Contributions

CLL and GD conceptualized the idea of the review. CLL, LE, and GD prepared the initial drafts of the manuscript. CD, GP, and VP contributed to the writing and manuscript improvement. CLL, LE, and GD contributed to the creation of figures and tables. All authors reviewed the manuscript and approved to the final version of this manuscript.

Corresponding author

Correspondence to Giacomo Donati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levra Levron, C., Elettrico, L., Duval, C. et al. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ (2024). https://doi.org/10.1038/s41418-023-01254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-023-01254-6

Search

Quick links