Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesenchymal stem cells as therapeutic vehicles for glioma

Abstract

Glioma is a disease with a poor prognosis despite the availability of multimodality treatments, and the development of novel therapies is urgently needed. Challenges in glioma treatment include the difficulty for drugs to cross the blood–brain barrier when administered systemically and poor drug diffusion when administered locally. Mesenchymal stem cells exhibit advantages for glioma therapy because of their ability to pass through the blood–brain barrier and migrate to tumor cells and their tolerance to the immune system. Therefore, mesenchymal stem cells have been explored as vehicles for various therapeutic agents for glioma treatment. Mesenchymal stem cells loaded with chemotherapeutic drugs show improved penetration and tumor accumulation. For gene therapy, mesenchymal stem cells can be used as vehicles for suicide genes, the so-called gene-directed enzyme prodrug therapy. Mesenchymal stem cell-based oncolytic viral therapies have been attempted in recent years to enhance the efficacy of infection against the tumor, viral replication, and distribution of viral particles. Many uncertainties remain regarding the function and behavior of mesenchymal stem cells in gliomas. However, strategies to increase mesenchymal stem cell migration to gliomas may improve the delivery of therapeutic agents and enhance their anti-tumor effects, representing promising potential for patient treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemokines and growth factors associated with MSC migration secreted by glioma cells.
Fig. 2: Schema of the treatment of gliomas using MSCs as a vehicle.

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115:3–8.

    Article  PubMed  Google Scholar 

  3. Jensdottir M, Beniaminov S, Jakola AS, Persson O, Norrelgen F, Hylin S, et al. Standardized reporting of adverse events and functional status from the first 5 years of awake surgery for gliomas: a population-based single-institution consecutive series. Acta Neurochir (Wien). 2022;164:1995–2008.

    Article  PubMed  Google Scholar 

  4. van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma—taking the fight to the tumour. Nat Rev Neurol. 2022;18:221–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs. temozolomide alone for glioblastoma: a Randomized Clinical Trial. JAMA. 2015;314:2535–43.

    Article  CAS  PubMed  Google Scholar 

  6. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.

    Article  CAS  PubMed  Google Scholar 

  7. Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389:589–601.

    Article  CAS  PubMed  Google Scholar 

  8. Oishi T, Koizumi S, Kurozumi K. Molecular mechanisms and clinical challenges of glioma invasion. Brain Sci. 2022;12:291.

  9. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA. 2000;97:12846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62:3603–8.

    CAS  PubMed  Google Scholar 

  11. Yamazoe T, Koizumi S, Yamasaki T, Amano S, Tokuyama T, Namba H. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model. Int J Oncol. 2015;46:147–52.

    Article  CAS  PubMed  Google Scholar 

  12. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, et al. Generalized potential of adult neural stem cells. Science. 2000;288:1660–3.

    Article  CAS  PubMed  Google Scholar 

  13. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nowak B, Rogujski P, Janowski M, Lukomska B, Andrzejewska A. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Biochim Biophys Acta Rev Cancer. 2021;1876:188582.

    Article  CAS  PubMed  Google Scholar 

  17. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97:13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296–311.

    Article  CAS  PubMed  Google Scholar 

  19. Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, et al. Dental pulp-derived mesenchymal stem cells for modeling genetic disorders. Int J Mol Sci. 2021;22:2269.

  20. Mahdavi-Jouibari F, Parseh B, Kazeminejad E, Khosravi A. Hopes and opportunities of stem cells from human exfoliated deciduous teeth (SHED) in cartilage tissue regeneration. Front Bioeng Biotechnol. 2023;11:1021024.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2009;69:8932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pavon LF, Sibov TT, de Souza AV, da Cruz EF, Malheiros SMF, Cabral FR, et al. Tropism of mesenchymal stem cell toward CD133(+) stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res Ther. 2018;9:310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006;12:5550–6.

    Article  CAS  PubMed  Google Scholar 

  24. Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D’Apuzzo M, et al. Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res. 2017;23:2951–60.

    Article  CAS  PubMed  Google Scholar 

  25. Tamura R, Miyoshi H, Morimoto Y, Oishi Y, Sampetrean O, Iwasawa C, et al. Gene therapy using neural stem/progenitor cells derived from human induced pluripotent stem cells: visualization of migration and bystander killing effect. Hum Gene Ther. 2020;31:352–66.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65:3307–18.

    Article  CAS  PubMed  Google Scholar 

  27. Yamasaki T, Wakao S, Kawaji H, Koizumi S, Sameshima T, Dezawa M, et al. Genetically engineered multilineage-differentiating stress-enduring cells as cellular vehicles against malignant gliomas. Mol Ther Oncol. 2017;6:45–56.

    Article  CAS  Google Scholar 

  28. Shimizu Y, Gumin J, Gao F, Hossain A, Shpall EJ, Kondo A, et al. Characterization of patient-derived bone marrow human mesenchymal stem cells as oncolytic virus carriers for the treatment of glioblastoma. J Neurosurg. 2022;136:757–67.

    Article  CAS  PubMed  Google Scholar 

  29. Kitzberger C, Spellerberg R, Han Y, Schmohl KA, Stauss C, Zach C, et al. Mesenchymal stem cell-mediated image-guided sodium iodide symporter (NIS) gene therapy improves survival of glioblastoma-bearing mice. Clin Cancer Res. 2023;29:930–42.

    Article  CAS  PubMed  Google Scholar 

  30. Hata N, Shinojima N, Gumin J, Yong R, Marini F, Andreeff M, et al. Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery. 2010;66:144–56. discussion 56-7.

    Article  PubMed  Google Scholar 

  31. Kim SM, Kim DS, Jeong CH, Kim DH, Kim JH, Jeon HB, et al. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem Biophys Res Commun. 2011;407:741–6.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto T, Koizumi S, Oishi T, Horikawa M, Asakawa T, Yamasaki T, et al. Migration capacity of stem cells from human exfoliated deciduous teeth towards glioma. J Integr Neurosci. 2022;22:1.

    Article  PubMed  Google Scholar 

  33. Al-Kharboosh R, ReFaey K, Lara-Velazquez M, Grewal SS, Imitola J, Quinones-Hinojosa A. Inflammatory mediators in glioma microenvironment play a dual role in gliomagenesis and mesenchymal stem cell homing: implication for cellular therapy. Mayo Clin Proc Innov Qual Outcomes. 2020;4:443–59.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS ONE. 2012;7:e34608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Jiang C, Li M, Wang X, Tian F, Fang X, et al. CXCR4 enhances invasion and proliferation of bone marrow stem cells via PI3K/AKT/NF-kappaB signaling pathway. Int J Clin Exp Pathol. 2017;10:9829–36.

    PubMed  PubMed Central  Google Scholar 

  37. Park SA, Ryu CH, Kim SM, Lim JY, Park SI, Jeong CH, et al. CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol. 2011;38:97–103.

    CAS  PubMed  Google Scholar 

  38. Yoshida K, Suzuki S, Yuan H, Sato A, Hirata-Tsuchiya S, Saito M, et al. Public RNA-seq data-based identification and functional analyses reveal that MXRA5 retains proliferative and migratory abilities of dental pulp stem cells. Sci Rep. 2023;13:15574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther. 2015;6:234.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schu S, Nosov M, O’Flynn L, Shaw G, Treacy O, Barry F, et al. Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med. 2012;16:2094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan AE, Lohan P, O’Flynn L, Treacy O, Chen X, Coleman C, et al. Chondrogenic differentiation increases antidonor immune response to allogeneic mesenchymal stem cell transplantation. Mol Ther. 2014;22:655–67.

    Article  CAS  PubMed  Google Scholar 

  42. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105:2821–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007;83:71–6.

    Article  PubMed  Google Scholar 

  44. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12:574–91.

    Article  PubMed  Google Scholar 

  45. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;156:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–9.

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int J Mol Sci. 2022;23:10023.

  48. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31:146–55.

    Article  CAS  PubMed  Google Scholar 

  49. Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, et al. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother. 2019;112:108625.

    Article  CAS  PubMed  Google Scholar 

  50. Feng J, Yao Z, Yang H, Ma J, Zhong X, Qin Y, et al. Bone marrow-derived mesenchymal stem cells expressing BMP2 suppress glioma stem cell growth and stemness through Bcl-2/Bax signaling. J Cancer Res Ther. 2022;18:2033–40.

    Article  CAS  PubMed  Google Scholar 

  51. Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther. 2018;11:5753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gecys D, Skredeniene R, Gecyte E, Kazlauskas A, Balnyte I, Jekabsone A. Adipose tissue-derived stem cell extracellular vesicles suppress glioblastoma proliferation, invasiveness and angiogenesis. Cells. 2023;12:1247.

  53. Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 2013;22:1370–86.

    Article  CAS  PubMed  Google Scholar 

  54. Rodini CO, Goncalves da Silva PB, Assoni AF, Carvalho VM, Okamoto OK. Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget. 2018;9:24766–77.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feng B, Chen L. Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm. 2009;24:717–21.

    CAS  PubMed  Google Scholar 

  56. Iser IC, Ceschini SM, Onzi GR, Bertoni AP, Lenz G, Wink MR. Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-mesenchymal-like transition (EMT-Like) in glioma cells in vitro. Mol Neurobiol. 2016;53:7184–99.

    Article  CAS  PubMed  Google Scholar 

  57. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.

    Article  CAS  PubMed  Google Scholar 

  58. Pan C, Liu P, Ma D, Zhang S, Ni M, Fang Q, et al. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia. Biomed Pharmacother. 2020;130:110610.

    Article  CAS  PubMed  Google Scholar 

  59. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008;99:622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5:e10088.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE. 2012;7:e45590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, et al. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: from mechanisms to therapy. Biomed Pharmacother. 2023;167:115505.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y, Kopecek J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target. 2013;21:1–26.

    Article  PubMed  Google Scholar 

  64. Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;5:7462–70.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Y, Tang S, Guo J, Alahdal M, Cao S, Yang Z, et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep. 2017;7:44758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kono Y, Kamino R, Hirabayashi S, Kishimoto T, Kanbara H, Danjo S, et al. Efficient liposome loading onto surface of mesenchymal stem cells via electrostatic interactions for tumor-targeted drug delivery. Biomedicines. 2023;11:558.

  67. Wang XL, Zhao WZ, Fan JZ, Jia LC, Lu YN, Zeng LH, et al. Tumor tropic delivery of hyaluronic acid-poly (d,l-lactide-co-glycolide) polymeric micelles using mesenchymal stem cells for glioma therapy. Molecules. 2022;27:2419.

  68. Lai YH, Su CY, Cheng HW, Chu CY, Jeng LB, Chiang CS, et al. Stem cell-nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat Commun. 2023;14:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016;99:113–28.

    Article  CAS  PubMed  Google Scholar 

  70. Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol. 2015;17:ii24–ii36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giotta Lucifero A, Luzzi S, Brambilla I, Guarracino C, Mosconi M, Foiadelli T, et al. Gene therapies for high-grade gliomas: from the bench to the bedside. Acta Biomed. 2020;91:32–50.

    PubMed  PubMed Central  Google Scholar 

  72. Horikawa M, Koizumi S, Oishi T, Yamamoto T, Ikeno M, Ito M, et al. Potent bystander effect and tumor tropism in suicide gene therapy using stem cells from human exfoliated deciduous teeth. Cancer Gene Ther. 2023;30:85–95.

    Article  CAS  PubMed  Google Scholar 

  73. Hossain JA, Marchini A, Fehse B, Bjerkvig R, Miletic H. Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neurooncol Adv. 2020;2:vdaa013.

    PubMed  PubMed Central  Google Scholar 

  74. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–401.

    Article  CAS  PubMed  Google Scholar 

  75. Villatoro AJ, Alcoholado C, Martin-Astorga MDC, Rubio N, Blanco J, Garrido CP, et al. Suicide gene therapy by canine mesenchymal stem cell transduced with thymidine kinase in a u-87 glioblastoma murine model: secretory profile and antitumor activity. PLoS ONE. 2022;17:e0264001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iwasawa C, Tamura R, Sugiura Y, Suzuki S, Kuzumaki N, Narita M, et al. Increased cytotoxicity of herpes simplex virus thymidine kinase expression in human induced pluripotent stem cells. Int J Mol Sci. 2019;20:810.

  77. Bashyal N, Lee TY, Chang DY, Jung JH, Kim MG, Acharya R, et al. Improving the safety of mesenchymal stem cell-based ex vivo therapy using herpes simplex virus thymidine kinase. Mol Cells. 2022;45:479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oishi T, Ito M, Koizumi S, Horikawa M, Yamamoto T, Yamagishi S, et al. Efficacy of HSV-TK/GCV system suicide gene therapy using SHED expressing modified HSV-TK against lung cancer brain metastases. Mol Ther Methods Clin Dev. 2022;26:253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oraee-Yazdani S, Tavanaei R, Rostami F, Hajarizadeh A, Mehrabadi M, Akhlaghpasand M, et al. Suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cell gene delivery vehicles in recurrent glioblastoma multiforme: a first-in-human, dose-escalation, phase I clinical trial. J Transl Med. 2023;21:350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurozumi K, Tamiya T, Ono Y, Otsuka S, Kambara H, Adachi Y, et al. Apoptosis induction with 5-fluorocytosine/cytosine deaminase gene therapy for human malignant glioma cells mediated by adenovirus. J Neurooncol. 2004;66:117–27.

    Article  PubMed  Google Scholar 

  81. Jung JH, Kim AA, Chang DY, Park YR, Suh-Kim H, Kim SS. Three-dimensional assessment of bystander effects of mesenchymal stem cells carrying a cytosine deaminase gene on glioma cells. Am J Cancer Res. 2015;5:2686–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chang DY, Jung JH, Kim AA, Marasini S, Lee YJ, Paek SH, et al. Combined effects of mesenchymal stem cells carrying cytosine deaminase gene with 5-fluorocytosine and temozolomide in orthotopic glioma model. Am J Cancer Res. 2020;10:1429–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang C, Natsume A, Lee HJ, Motomura K, Nishimira Y, Ohno M, et al. Neural stem cell-based dual suicide gene delivery for metastatic brain tumors. Cancer Gene Ther. 2012;19:796–801.

    Article  CAS  PubMed  Google Scholar 

  84. Ropper AE, Zeng X, Haragopal H, Anderson JE, Aljuboori Z, Han I, et al. Targeted treatment of experimental spinal cord glioma with dual gene-engineered human neural stem cells. Neurosurgery. 2016;79:481–91.

    Article  PubMed  Google Scholar 

  85. Kim MG, Lee YJ, Jung JH, Chang DY, Bashyal N, Suh-Kim H, et al. Enhanced antitumor efficacy of mesenchymal stem cells expressing cytosine deaminase and 5-fluorocytosine combined with alpha-galactosylceramide in a colon cancer model. Am J Cancer Res. 2023;13:2439–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, et al. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal. 2023;21:43.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jiang S, Chai H, Tang Q, Shi Z, Zhou L. Clinical advances in oncolytic virus therapy for malignant glioma: a systematic review. Discov Oncol. 2023;14:183.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Otani Y, Yoo JY, Chao S, Liu J, Jaime-Ramirez AC, Lee TJ, et al. Oncolytic HSV-infected glioma cells activate NOTCH in adjacent tumor cells sensitizing tumors to gamma secretase inhibition. Clin Cancer Res. 2020;26:2381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lal S, Raffel C. Using cystine knot proteins as a novel approach to retarget oncolytic measles virus. Mol Ther Oncol. 2017;7:57–66.

    Article  CAS  Google Scholar 

  90. Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuovo GJ, et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. 2018;10.

  91. Kim TE, Puckett S, Zhang K, Herpai DM, Ornelles DA, Davis JN, et al. Diversity in responses to oncolytic Lassa-vesicular stomatitis virus in patient-derived glioblastoma cells. Mol Ther Oncol. 2021;22:232–44.

    Article  CAS  Google Scholar 

  92. Kazimirsky G, Jiang W, Slavin S, Ziv-Av A, Brodie C. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res Ther. 2016;7:149.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sun Y, Zhang Z, Zhang C, Zhang N, Wang P, Chu Y, et al. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition. Mol Ther Oncol. 2022;26:105–19.

    Article  CAS  Google Scholar 

  94. Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379:150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther. 2011;19:335–44.

    Article  CAS  PubMed  Google Scholar 

  96. Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 2007;99:1768–81.

    Article  CAS  PubMed  Google Scholar 

  97. Hai C, Jin YM, Jin WB, Han ZZ, Cui MN, Piao XZ, et al. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma. Chin J Cancer. 2012;31:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoon AR, Hong J, Li Y, Shin HC, Lee H, Kim HS, et al. Mesenchymal stem cell-mediated delivery of an oncolytic adenovirus enhances antitumor efficacy in hepatocellular carcinoma. Cancer Res. 2019;79:4503–14.

    Article  CAS  PubMed  Google Scholar 

  99. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virol J. 2020;17:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roy DG, Bell JC. Cell carriers for oncolytic viruses: current challenges and future directions. Oncol Virother. 2013;2:47–56.

    Google Scholar 

  101. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008;26:831–41.

    Article  CAS  PubMed  Google Scholar 

  102. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Suryadevara CM, Desai R, Abel ML, Riccione KA, Batich KA, Shen SH, et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology. 2018;7:e1434464.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sahin A, Sanchez C, Bullain S, Waterman P, Weissleder R, Carter BS. Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma. PLoS ONE. 2018;13:e0199414.

    Article  PubMed  PubMed Central  Google Scholar 

  105. McKenna MK, Englisch A, Brenner B, Smith T, Hoyos V, Suzuki M, et al. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther. 2021;29:1808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Srinivasan VM, Gumin J, Camstra KM, Collins DE, Chen MM, Shpall EJ, et al. Endovascular selective intra-arterial infusion of mesenchymal stem cells loaded with delta-24 in a canine model. Neurosurgery. 2020;88:E102–E13.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fares J, Ahmed AU, Ulasov IV, Sonabend AM, Miska J, Lee-Chang C, et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol. 2021;22:1103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gabrielle White Wolf, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TO wrote the manuscript and produced the figures. SK and KK planned the conception and design of the review and revised the manuscript.

Corresponding author

Correspondence to Kazuhiko Kurozumi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, T., Koizumi, S. & Kurozumi, K. Mesenchymal stem cells as therapeutic vehicles for glioma. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00775-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00775-7

Search

Quick links