Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis

Abstract

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of transcription factor YY1 in GBM and its effect on the self-renewal of GSCs.
Fig. 2: YY1 accelerates the self-renewal of GSCs by promoting SENP1 expression.
Fig. 3: YY1 inhibits SUMO modification of METL3 by upregulating the expression of SENP1, thereby promoting the m6A modification of MYC.
Fig. 4: SENP1 accelerates the self-renewal of GSCs through the METTL3/MYC axis.
Fig. 5: YY1/SENP1/METTL3/MYC axis affects self-renewal of GSCs.
Fig. 6: YY1 promotes the tumorigenicity of GSCs through MYC in vivo.
Fig. 7: A schematic map showing the regulation of the YY1/SENP1/METTL3/MYC axis in the function of GSCs.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical presentation, diagnosis, and management. BMJ. 2021;374:n1560.

    Article  PubMed  Google Scholar 

  2. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo C, Song K, Wu S, Hameed NUF, Kudulaiti N, Xu H, et al. The prognosis of glioblastoma: a large, multifactorial study. Br J Neurosurg. 2021;35:555–61.

    Article  PubMed  Google Scholar 

  4. Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and research related to glioblastoma: advancements and future targets. Curr Drug Metab. 2020;21:186–98.

    Article  CAS  PubMed  Google Scholar 

  5. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pedersen H, Anne Adanma Obara E, Elbaek KJ, Vitting-Serup K, Hamerlik P. Replication Protein A (RPA) Mediates radio-resistance of glioblastoma cancer stem-like cells. Int J Mol Sci. 2020;21:1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeong HY, Kim HJ, Kim CE, Lee S, Choi MC, Kim SH. High expression of RFX4 is associated with tumor progression and poor prognosis in patients with glioblastoma. Int J Neurosci. 2021;131:7–14.

    Article  CAS  PubMed  Google Scholar 

  8. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33:591–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021;10:621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu Z, Zhao L, Shen JZ, Liang Z, Wu Q, Yang K, et al. Transcription elongation machinery is a druggable dependency and potentiates immunotherapy in glioblastoma stem cells. Cancer Discov. 2022;12:502–21.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Sun D, Chen YJ, Xie X, Shi Y, Tabar V, et al. Cell lineage-based stratification for glioblastoma. Cancer Cell. 2020;38:366–79. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaufhold S, Garban H, Bonavida B. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res. 2016;35:84.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baritaki S, Chatzinikola AM, Vakis AF, Soulitzis N, Karabetsos DA, Neonakis I, et al. YY1 Over-expression in human brain gliomas and meningiomas correlates with TGF-beta1, IGF-1 and FGF-2 mRNA levels. Cancer Invest. 2009;27:184–92.

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Gong X, Huang M. YY1-activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK signaling pathway. Cancer Biother Radiopharm. 2019;34:589–96.

    CAS  PubMed  Google Scholar 

  16. Waters MR, Gupta AS, Mockenhaupt K, Brown LN, Biswas DD, Kordula T. RelB acts as a molecular switch driving chronic inflammation in glioblastoma multiforme. Oncogenesis. 2019;8:37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, et al. Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-kappaB/Akt pathways. Gene. 2016;595:175–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wu T, Donohoe ME. Yy1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. J Biomed Sci. 2019;26:79.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li X, Meng Y. SUMOylation regulator-related molecules can be used as prognostic biomarkers for glioblastoma. Front Cell Dev Biol. 2021;9:658856.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang QS, Zhang M, Huang XJ, Liu XJ, Li WP. Downregulation of SENP1 inhibits cell proliferation, migration and promotes apoptosis in human glioma cells. Oncol Lett. 2016;12:217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang-Ming Y, Zhi-Qiang X, Ting Z, Jian W, Jian P, Li-Qun Y, et al. SENP1 regulates cell migration and invasion in neuroblastoma. Biotechnol Appl Biochem. 2016;63:435–40.

    Article  PubMed  Google Scholar 

  22. Dong Z, Cui H. The emerging roles of RNA modifications in glioblastoma. Cancers (Basel). 2020;12:736.

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N(6)-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019;79:5785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18:2622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37:522–33.

    Article  CAS  PubMed  Google Scholar 

  26. Shi J, Chen G, Dong X, Li H, Li S, Cheng S, et al. METTL3 promotes the resistance of glioma to temozolomide via increasing MGMT and ANPG in a m(6)A dependent manner. Front Oncol. 2021;11:702983.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu P, Ge R. Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem. 2022;230:114118.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H, Wu M, et al. The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network. Oncogene. 2019;38:3667–80.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 2016;7:64527–42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang DD, Chen ZH, Yu K, Lu JH, Wu QN, Wang Y, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018;46:5195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y, et al. PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J. 2009;28:21–33.

    Article  PubMed  Google Scholar 

  34. Li Q, Uemura Y, Kawahara Y. Cross-linking and immunoprecipitation of nuclear RNA-binding proteins. Methods Mol Biol. 2015;1262:247–63.

    Article  CAS  PubMed  Google Scholar 

  35. Tabatabai G, Weller M. Glioblastoma stem cells. Cell Tissue Res. 2011;343:459–65.

    Article  PubMed  Google Scholar 

  36. Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, et al. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat. 2019;42:35–45.

    Article  PubMed  Google Scholar 

  37. Li H, Li T, Huang D, Zhang P. Long noncoding RNA SNHG17 induced by YY1 facilitates the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/beta-catenin signaling pathway. Cancer Cell Int. 2020;20:29.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Zheng D, Li Y, Zhang Y, Sui R, Chen Y, et al. Circular RNA circ_0001588 sponges miR-211-5p to facilitate the progression of glioblastoma via up-regulating YY1 expression. J Gene Med. 2021;23:e3371.

    Article  CAS  PubMed  Google Scholar 

  39. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:13616.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, et al. SENP1 promotes hypoxia-induced cancer stemness by HIF-1alpha deSUMOylation and SENP1/HIF-1alpha positive feedback loop. Gut. 2017;66:2149–59.

    Article  CAS  PubMed  Google Scholar 

  41. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18:110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guo J, Xiang Q, Xin Y, Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal. 2020;18:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varum S, Baggiolini A, Zurkirchen L, Atak ZK, Cantu C, Marzorati E, et al. Yin Yang 1 orchestrates a metabolic program required for both neural crest development and melanoma formation. Cell Stem Cell. 2019;24:637–53. e9

    Article  CAS  PubMed  Google Scholar 

  44. Lu Z, Hong CC, Kong G, Assumpcao A, Ong IM, Bresnick EH, et al. Polycomb group protein YY1 is an essential regulator of hematopoietic stem cell quiescence. Cell Rep. 2018;22:1545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Wu X, Wei C, Huang X, Ma Q, Huang X, et al. YY1 positively regulates transcription by targeting promoters and super-enhancers through the BAF complex in embryonic stem cells. Stem Cell Rep. 2018;10:1324–39.

    Article  CAS  Google Scholar 

  46. Yoshida GJ. Correction to: Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 2018;37:285.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, Donahue LR, Murray S, et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation. 2010;80:9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai C, Hu X, Dai P, Zhang T, Jiang M, Wang L, et al. c-Myc regulates neural stem cell quiescence and activation by coordinating the cell cycle and mitochondrial remodeling. Signal Transduct Target Ther. 2021;6:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong J, Huang Q. Targeting glioma stem cells: enough to terminate gliomagenesis? Chin Med J (Engl). 2011;124:2756–63.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Sichuan Clinical Research Center for Neurosurgery, Luzhou Science and Technology Program (2020-JYJ-45), Science and Technology Foundation of Sichuan (2021YJ0430) and Luzhou Municipal People’s Government-Southwest Medical University Joint Project (2020LZXNYDJ33).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: XBY, BT, and LLP. Performed experiments: YJ, HPH, and SZ. Performed experimental validation: JZH and LGC. Analyzed the data and conceived figures: XGX and CHZ. Wrote the manuscript: XBY, BT, and LLP. Revised the manuscript: YJ, TMP, and CHZ. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiaobo Yang or Chuanhong Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Tao, B., Peng, L. et al. Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis. Cancer Gene Ther 30, 683–693 (2023). https://doi.org/10.1038/s41417-022-00580-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00580-0

Search

Quick links