Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CLEC5A expressed on myeloid cells as a M2 biomarker relates to immunosuppression and decreased survival in patients with glioma

Abstract

Glioma is the most common tumor in the central nervous system that portends a poor prognosis. Key genes negatively related to survival may provide targets for therapy to improve the outcome of glioma. Here, we report a protein-coding gene CLEC5A, which is the top 1 gene by univariate Cox regression analysis of 524 primary GBM samples. Expression of CLEC5A is significantly correlated with decreased overall survival in patients with glioma via large-scale analysis. An analysis of 2589 patient samples showed that CLEC5A expression is higher in (1) glioblastoma than in lower-grade glioma and nontumor tissue, (2) in the mesenchymal subtype than in other subtypes, and (3) in IDH1-wild type glioblastoma than in IDH1-mutated glioblastoma. Notably, this tumor-associated biomarker is expressed preferentially on myeloid cells over glioma cells. And it shows a strong co-expression with M2 macrophage biomarker. Furthermore, CLEC5A-associated genes are enriched in immunosuppressive biological processes. The silico flow cytometry also showed CLEC5A expression related to less tumor purity and more tumor-promoting leukocytes infiltration. In conclusion, we proposed a new M2 biomarker expressed on myeloid cells that may decrease survival in patients with glioma through immunosuppressive mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392:432–46.

    Article  Google Scholar 

  2. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.

    Article  CAS  Google Scholar 

  3. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708.

    Article  CAS  Google Scholar 

  4. Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget. 2017;8:91779–94.

    Article  Google Scholar 

  5. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Article  CAS  Google Scholar 

  6. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    Article  CAS  Google Scholar 

  7. Chen ST, Liu RS, Wu MF, Lin YL, Chen SY, Tan DT, et al. CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog. 2012;8:e1002655.

    Article  CAS  Google Scholar 

  8. Schäffler H, Rohde M, Rohde S, Huth A, Gittel N, Hollborn H, et al. NOD2- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohn’s disease patients. World J Gastroenterol. 2018;24:1196–205.

    Article  Google Scholar 

  9. Tung YT, Chang CC, Lin YL, Hsieh SL, Wang GJ. Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosens Bioelectron. 2016;77:90–8.

    Article  CAS  Google Scholar 

  10. Wu MF, Chen ST, Yang AH, Lin WW, Lin YL, Chen NJ, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood. 2013;121:95–106.

    Article  CAS  Google Scholar 

  11. Chen ST, Li FJ, Hsu TY, Liang SM, Yeh YC, Liao WY, et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat Commun. 2017;8:299.

    Article  Google Scholar 

  12. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453:672–6.

    Article  CAS  Google Scholar 

  13. Li T, Yi L, Hai L, Ma H, Tao Z, Zhang C, et al. The interactome and spatial redistribution feature of Ca2+ receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis. 2018;9:292.

    Article  Google Scholar 

  14. Wang J, Miletic H, Sakariassen PØ, Huszthy PC, Jacobsen H, Brekkå N, et al. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer. 2009;9:465.

    Article  CAS  Google Scholar 

  15. Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 2018;7:e1466769.

    Article  Google Scholar 

  16. Choi J, Mai N, Jackson C, Belcaid Z, Lim M. It takes two: potential therapies and insights involving microglia and macrophages in glioblastoma. Neuroimmunol. Neuroinflammation. 2018;5:42.

  17. Cheng W, Ren X, Zhang C, Cai J, Liu Y, Han S, et al. Bioinformatic profiling identifies an immune-related risk signature for glioblastoma. Neurology. 2016;86:2226–34.

    Article  CAS  Google Scholar 

  18. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  Google Scholar 

  19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  Google Scholar 

  20. Laks DR, Crisman TJ, Shih MY, Mottahedeh J, Gao F, Sperry J, et al. Large-scale assessment of the gliomasphere model system. Neuro Oncol. 2016;18:1367–78.

    Article  CAS  Google Scholar 

  21. Kim YW, Kwon C, Liu JL, Kim SH, Kim S. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma. PLoS ONE. 2012;7:e40960.

    Article  CAS  Google Scholar 

  22. Su XY, Della-Valle V, Andre-Schmutz I, Lemercier C, Radford-Weiss I, Ballerini P, et al. HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35; q32). Blood. 2006;108:4198–201.

    Article  CAS  Google Scholar 

  23. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273–81.

    Article  CAS  Google Scholar 

  24. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von DA. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129:829–48.

    Article  CAS  Google Scholar 

  25. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33:152.

    Article  CAS  Google Scholar 

  26. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120:707–18.

    Article  Google Scholar 

  27. Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci USA. 1999;96:9792–6.

    Article  CAS  Google Scholar 

  28. Glass R, Synowitz M. CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol. 2014;128:347–62.

    Article  CAS  Google Scholar 

  29. González-Domínguez É, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gómez-Campos G, Salas A, et al. CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol. 2015;98:453–66.

    Article  Google Scholar 

  30. Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol. 2017;19:796–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15:422–42.

    Article  CAS  Google Scholar 

  32. Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 2016;131:365–78.

    Article  CAS  Google Scholar 

  33. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13:206–20.

    Article  CAS  Google Scholar 

  34. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, et al. Tumor Purity as an Underlying Key Factor in Glioma. Clin Cancer Res. 2017;23:6279–91.

    Article  CAS  Google Scholar 

  35. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99:180–5.

    Article  CAS  Google Scholar 

  36. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216:15–24.

    Article  CAS  Google Scholar 

  37. Massara M, Persico P, Bonavita O, Mollica PV, Locati M, Simonelli M, et al. Neutrophils in Gliomas. Front Immunol. 2017;8:1349.

    Article  Google Scholar 

  38. Yang ZZ, Kim HJ, Villasboas JC, Price-Troska T, Jalali S, Wu H, et al. Mass cytometry analysis reveals that specific intratumoral CD4+ T cell subsets correlate with patient survival in follicular lymphoma. Cell Rep. 2019;26:2178–93.e3.

    Article  CAS  Google Scholar 

  39. Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, et al. Insights into the molecular mechanisms of T follicular helper-mediated immunity and pathology. Front Immunol. 2018;9:1884.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the teams of the TCGA, CGGA, REMBRANDT and GSE16011. We also thank the online tool providers, including Betastasis, R2, GEPIA, CCLE, CIBERSORT, and Morpheus.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81872063) and the State Scholarship Fund from China Scholarship Council (No. 201806940031). ML is funded by Arbor, Aegenus, Altor, BMS, Accuray, and DNAtrix. This research received no external funding from these companies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Lim or Xuejun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Luqing Tong, Jiabo Li

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Li, J., Choi, J. et al. CLEC5A expressed on myeloid cells as a M2 biomarker relates to immunosuppression and decreased survival in patients with glioma. Cancer Gene Ther 27, 669–679 (2020). https://doi.org/10.1038/s41417-019-0140-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0140-8

This article is cited by

Search

Quick links