Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging agents and regimens for treatment of relapsed and refractory acute myeloid leukemia

Subjects

Abstract

Relapsed and refractory acute myeloid leukemia (R/R AML) has complicated pathogenesis. Its treatment is complicated, and the prognosis is poor. So far, there is no consensus on what is the optimal treatment strategy. With the deepening of research, new chemotherapy regimens, new small molecule inhibitors, and immunotherapy have been increasingly applied to clinical trials, providing more possibilities for the treatment of R/R AML. The most effective treatment for patients who achieve complete remission after recurrence is still sequential conditioning therapy followed by allogeneic hematopoietic cell transplantation. Finding the best combination of treatments is still an important goal for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Estey E, Döhner H. Acute myeloid leukaemia. Lancet 2006;368:1894–907.

    Google Scholar 

  2. Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341:1051–62.

    CAS  Google Scholar 

  3. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424–47.

    PubMed  PubMed Central  Google Scholar 

  4. Walter RB, Othus M, Burnett AK, Löwenberg B, Kantarjian HM, Ossenkoppele GJ, et al. Resistance prediction in AML: analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia 2015;29:312–20.

    CAS  PubMed  Google Scholar 

  5. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111:2548–53.

    CAS  Google Scholar 

  6. Keating M, Kantarjian H, Smith TL, Estey E, Walters R, Andersson B, et al. Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol. 1989;7:1071–80.

    CAS  PubMed  Google Scholar 

  7. Sternberg DW, Aird W, Neuberg D, Thompson L, MacNeill K, Amrein P, et al. Treatment of patients with recurrent and primary refractory acute myelogenous leukemia using mitoxantrone and intermediate-dose cytarabine: a pharmacologically based regimen. Cancer 2000;88:2037–41.

    CAS  PubMed  Google Scholar 

  8. Kern W, Aul C, Maschmeyer G, Schönrock-Nabulsi R, Ludwig WD, Bartholomäus A, et al. Superiority of high-dose over intermediate-dose cytosine arabinoside in the treatment of patients with high-risk acute myeloid leukemia: results of an age-adjusted prospective randomized comparison. Leukemia 1998;12:1049–55.

    CAS  PubMed  Google Scholar 

  9. Rees JK, Gray RG, Swirsky D, Hayhoe FG. Principal results of the Medical Research Council’s 8th acute myeloid leukaemia trial. Lancet 1986;2:1236–41.

    Google Scholar 

  10. Tavernier E, Le QH, Elhamri M, Thomas X. Salvage therapy in refractory acute myeloid leukemia: prediction of outcome based on analysis of prognostic factors. Leuk Res. 2003;27:205–14.

    CAS  PubMed  Google Scholar 

  11. Estey E, Plunkett W, Gandhi V, Rios MB, Kantarjian H, Keating MJ. Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leuk Lymphoma. 1993;9:343–50.

    CAS  Google Scholar 

  12. Thalhammer F, Geissler K, Jäger U, Kyrle PA, Pabinger I, Mitterbauer M, et al. Duration of second complete remission in patients with acute myeloid leukemia treated with chemotherapy: a retrospective single-center study. Ann Hematol. 1996;72:216–22.

    CAS  PubMed  Google Scholar 

  13. Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol. 1999;107:69–79.

    CAS  PubMed  Google Scholar 

  14. Weltermann A, Fonatsch C, Haas OA, Greinix HT, Kahls P, Mitterbauer G, et al. Impact of cytogenetics on the prognosis of adults with de novo AML in first relapse. Leukemia 2004;18:293–302.

    CAS  PubMed  Google Scholar 

  15. Kern W, Haferlach T, Schnittger S, Ludwig WD, Hiddemann W, Schoch C. Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: implications for resistance against therapy. Leukemia 2002;16:2084–91.

    CAS  PubMed  Google Scholar 

  16. Zittoun R, Jehn U, Fière D, Haanen C, Löwenberg B, Willemze R, et al. Alternating v repeated postremission treatment in adult acute myelogenous leukemia: a randomized phase III study (AML6) of the EORTC Leukemia Cooperative Group. Blood 1989;73:896–906.

    CAS  PubMed  Google Scholar 

  17. Megías-Vericat JE, Martínez-Cuadrón D, Sanz MÁ, Montesinos P. Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: a systematic literature review. Ann Hematol. 2018;97:1115–53.

    PubMed  Google Scholar 

  18. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood 2013;121:1077–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kell J. Treatment of relapsed acute myeloid leukaemia. Rev Recent Clin Trials. 2006;1:103–11.

    CAS  PubMed  Google Scholar 

  20. Ferrara F, Melillo L, Montillo M, Leoni F, Pinto A, Mele G, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of acute myeloid leukemia relapsing after autologous stem cell transplantation. Ann Hematol. 1999;78:380–4.

    CAS  PubMed  Google Scholar 

  21. Montillo M, Mirto S, Petti MC, Latagliata R, Magrin S, Pinto A, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998;58:105–9.

    CAS  PubMed  Google Scholar 

  22. Visani G, Tosi P, Zinzani PL, Manfroi S, Ottaviani E, Testoni N, et al. FLAG (fludarabine+high-dose cytarabine+G-CSF): an effective and tolerable protocol for the treatment of ‘poor risk’ acute myeloid leukemias. Leukemia 1994;8:1842–6.

    CAS  PubMed  Google Scholar 

  23. Westhus J, Noppeney R, Dührsen U, Hanoun M. FLAG salvage therapy combined with idarubicin in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2019;60:1014–1022.

    Google Scholar 

  24. Liu QF, Sun J, Xu D, Zhang Y, Fan ZP, Wei YQ, et al. Effects of allogeneic hematopoietic stem cell transplantation with very-high-dose conditioning regimen for refractory leukemia. Di Yi Jun Yi Da Xue Xue Bao. 2004;24:1117–9.

    PubMed  Google Scholar 

  25. Wang L, Xu J, Tian X, Lv T, Yuan G. Analysis of efficacy and prognostic factors of CLAG treatment in chinese patients with refractory or relapsed acute myeloid leukemia. Acta Haematol. 2019;141:43–53.

    PubMed  Google Scholar 

  26. Bao Y, Zhao J2, Li ZZ. Comparison of clinical remission and survival between CLAG and FLAG induction chemotherapy in patients with refractory or relapsed acute myeloid leukemia: a prospective cohort study. Clin Transl Oncol. 2018;20:870–80.

    PubMed  Google Scholar 

  27. Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012;149:1284–97.

    CAS  PubMed  Google Scholar 

  28. Aslostovar L, Boyd AL, Almakadi M, Collins TJ, Leong DP, Tirona RG, et al. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv. 2018;2:1935–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sutton A, Ades AE, Cooper N, Abrams K. Use of indirect and mixed treatment comparisons for technology assessment. Pharmacoeconomics 2008;26:753–67.

    PubMed  Google Scholar 

  30. Jansen JP, Crawford B, Bergman G, Stam W. Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value Health 2008;11:956–64.

    PubMed  Google Scholar 

  31. Huang J, Gui C, Zhang L, Che F, Wang C. A Bayesian network meta-analysis comparing the efficacies of eleven novel therapies with the common salvage regimen for relapsed or refractory acute myeloid leukemia. Cell Physiol Biochem. 2018;49:1589–99.

    CAS  PubMed  Google Scholar 

  32. Thol F, Schlenk RF, Heuser M, Ganser A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 2015;126:319–27.

    CAS  PubMed  Google Scholar 

  33. Hemmati PG, Terwey TH, Na IK, Jehn CF, le Coutre P, Vuong LG, et al. Allogeneic stem cell transplantation for refractory acute myeloid leukemia: a single center analysis of long-term outcome. Eur J Haematol. 2015;95:498–506.

    PubMed  Google Scholar 

  34. Song KW, Lipton J. Is it appropriate to offer allogeneic hematopoietic stem cell transplantation to patients with primary refractory acute myeloid leukemia? Bone Marrow Transplant. 2005;36:183–91.

    CAS  PubMed  Google Scholar 

  35. Steckel NK, Groth C, Mikesch JH, Trenschel R, Ottinger H, Kordelas L, et al. High-dose melphalan-based sequential conditioning chemotherapy followed by allogeneic haematopoietic stem cell transplantation in adult patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol. 2018;180:840–53.

    CAS  PubMed  Google Scholar 

  36. Wang J, Zhao J, Fei X, Yin Y, Cheng H, Zhang W, et al. A new intensive conditioning regimen for allogeneic hematopoietic stem cell transplantation in patients with refractory or relapsed acute myeloid leukemia. Medicine (Baltimore). 2018;97:e0228.

    PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W, et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013;119:978–85.

    PubMed  Google Scholar 

  38. Raiola AM, Dominietto A, di Grazia C, Lamparelli T, Gualandi F, Ibatici A, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20:1573–9.

    PubMed  Google Scholar 

  39. Chen H, Liu KY, Xu LP, Chen YH, Han W, Zhang XH, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2015;21:1110–6.

    PubMed  Google Scholar 

  40. Gu B, Zhang X, Chen G, Wu X, Ma X, Chen S, et al. Efficacy of haploidentical hematopoietic stem cell transplantation compared to HLA-matched transplantation for primary refractory acute myeloid leukemia. Ann Hematol. 2018;97:2185–94.

    CAS  PubMed  Google Scholar 

  41. Schmid C, Schleuning M, Schwerdtfeger R, Hertenstein B, Mischak-Weissinger E, Bunjes D, et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006;108:1092–9.

    CAS  PubMed  Google Scholar 

  42. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005;23:5675–87.

    PubMed  Google Scholar 

  43. Fraccaroli A, Prevalsek D, Fritsch S, Haebe S, Bücklein V, Schulz C, et al. Sequential HLA-haploidentical transplantation utilizing post-transplantation cyclophosphamide for GvHD prophylaxis in high-risk and relapsed/refractory AML/MDS. Am J Hematol. 2018;93:1524–31.

    CAS  PubMed  Google Scholar 

  44. Davis JR, Benjamin DJ, Jonas BA. New and emerging therapies for acute myeloid leukaemia. J Investig Med. 2018;66:1088–95.

    PubMed  PubMed Central  Google Scholar 

  45. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–42.

    CAS  PubMed  Google Scholar 

  46. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Google Scholar 

  47. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013;2013:220–6.

    PubMed  Google Scholar 

  48. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–35.

    CAS  PubMed  Google Scholar 

  49. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia 1996;10:1911–8.

    CAS  PubMed  Google Scholar 

  50. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97:2434–9.

    CAS  PubMed  Google Scholar 

  51. Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer 2014;120:2142–9.

    CAS  PubMed  Google Scholar 

  52. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012;485:260–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012;119:5133–43.

    CAS  PubMed  Google Scholar 

  54. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998;12:1333–7.

    CAS  PubMed  Google Scholar 

  55. Pemmaraju N, Kantarjian H, Andreeff M, Cortes J, Ravandi F. Investigational FMS-like tyrosine kinase 3 inhibitors in treatment of acute myeloid leukemia. Expert Opin Investig Drugs. 2014;23:943–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee LY, Hernandez D, Rajkhowa T, Smith SC, Raman JR, Nguyen B, et al. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood 2017;129:257–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18:1061–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Usuki K, Sakura T, Kobayashi Y, Miyamoto T, Iida H, Morita S, et al. Clinical profile of gilteritinib in Japanese patients with relapsed/refractory acute myeloid leukemia: an open-label phase 1 study. Cancer Sci. 2018;109:3235–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Galanis A, Levis M. Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica 2015;100:e77–9.

    PubMed  Google Scholar 

  60. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009;114:2984–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31:3681–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortes J, Perl AE, Döhner H, Kantarjian H, Martinelli G, Kovacsovics T, et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19:889–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cortes JE, Tallman MS, Schiller GJ, Trone D, Gammon G, Goldberg SL, et al. Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood 2018;132:598–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412-a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15:17–28.

    CAS  PubMed  Google Scholar 

  65. Ramsingh G, Westervelt P, McBride A, Stockerl-Goldstein K, Vij R, Fiala M, et al. Phase I study of cladribine, cytarabine, granulocyte colony stimulating factor (CLAG regimen) and midostaurin and all-trans retinoic acid in relapsed/refractory AML. Int J Hematol. 2014;99:272–8.

    PubMed  PubMed Central  Google Scholar 

  66. Walker AR, Wang H, Walsh K, Bhatnagar B, Vasu S, Garzon R, et al. Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2016;57:2100–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011;117:3294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103:3669–76.

    CAS  PubMed  Google Scholar 

  69. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Götze K, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 2012;26:2353–9.

    CAS  PubMed  Google Scholar 

  70. Fiedler W, Serve H, Döhner H, Schwittay M, Ottmann OG, O’Farrell AM, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105:986–93.

    CAS  PubMed  Google Scholar 

  71. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608.

    CAS  PubMed  Google Scholar 

  72. Mondesir J, Willekens C, Touat M, de Botton S. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med. 2016;7:171–80.

  73. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 2017;31:272–81.

    PubMed  PubMed Central  Google Scholar 

  75. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. FDA approves first targeted treatment for patients with relapsed or refractory acute myeloid leukemia who have a certain genetic mutation [media release]. US Food and Drug Administration. 2018.

  77. Dhillon S. Ivosidenib: first global approval. Drugs 2018;78:1509–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Courtney DD, Eytan MS, Stéphane de B, Gail JR, Jessica KA, Alice SM, et al. Ivosidenib (AG-120) in mutant IDH1 relapsed/refractory acute myeloid leukemia: results of a phase 1 study. Clin Lymphoma, Myeloma Leuk. 2018;18:S204–5.

  79. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017;130:722–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stein EM, DiNardo CD, Fathi AT, Pollyea DA, Stone RM, Altman JK, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 2019;133:676–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kumar S, Kaufman JL, Gasparetto C, Mikhael J, Vij R, Pegourie B, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017;130:2401–9.

    CAS  PubMed  Google Scholar 

  84. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    CAS  PubMed  Google Scholar 

  85. Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 2014;28:1657–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aldoss I, Yang D, Aribi A, Ali H, Sandhu K, Al Malki MM, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica 2018;103:e404–7.

    PubMed  PubMed Central  Google Scholar 

  87. Belgiovine C, Bello E, Liguori M, Craparotta I, Mannarino L, Paracchini L, et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer 2017;117:628–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuroda H, Mabuchi S, Kozasa K, Yokoi E, Matsumoto Y, Komura N, et al. PM01183 inhibits myeloid-derived suppressor cells in vitro and in vivo. Immunotherapy 2017;9:805–17.

    CAS  PubMed  Google Scholar 

  89. Benton CB, Chien KS, Tefferi A, Rodriguez J, Ravandi F, Daver N, et al. Safety and tolerability of lurbinectedin (PM01183) in patients with acute myeloid leukemia and myelodysplastic syndrome. Hematol Oncol. 2019;37:96–102.

    PubMed  PubMed Central  Google Scholar 

  90. Caligiuri MA, Strout MP, Lawrence D, Arthur DC, Baer MR, Yu F, et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res. 1998;58:55–9.

    CAS  PubMed  Google Scholar 

  91. Dorrance AM, Liu S, Chong A, Pulley B, Nemer D, Guimond M, et al. The Mll partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 2008;112:2508–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest. 2006;116:2707–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mims AS, Mishra A, Orwick S, Blachly J, Klisovic RB, Garzon R, et al. A novel regimen for relapsed/refractory adult acute myeloid leukemia using a KMT2A partial tandem duplication targeted therapy: results of phase 1 study NCI 8485. Haematologica 2018;103:982–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Daver N, Boddu P, Garcia-Manero G, Yadav SS, Sharma P, Allison J, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018;32:1094–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, et al. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 2013;4:2067–79.

    PubMed  PubMed Central  Google Scholar 

  96. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014;28:1280–8.

    CAS  PubMed  Google Scholar 

  97. Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Gattermann N, Germing U, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28:562–9.

    CAS  PubMed  Google Scholar 

  98. Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Non-randomized, Open-label, Phase 2 Study. Cancer Discov. 2018;9:370–83.

    PubMed  PubMed Central  Google Scholar 

  99. Stahl M, DeVeaux M, Montesinos P, Itzykson R, Ritchie EK, Sekeres MA, et al. Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2:923–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Norsworthy KJ, Ko CW, Lee JE, Liu J, John CS, Przepiorka D, et al. FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia. Oncologist 2018;23:1103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vasu S, He S, Cheney C, Gopalakrishnan B, Mani R, Lozanski G, et al. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood 2016;127:2879–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Medeiros BC, Tanaka TN, Balaian L, Bashey A, Guzdar A, Li H, et al. A Phase I/II Trial of the Combination of Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2018;18:346–52.

    PubMed  Google Scholar 

  103. Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer. 1997;73:50–6.

    CAS  PubMed  Google Scholar 

  104. Sakamoto J, Furukawa K, Cordon-Cardo C, Yin BW, Rettig WJ, Oettgen HF, et al. Expression of lewisa, lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines. Cancer Res. 1986;46:1553–61.

    CAS  PubMed  Google Scholar 

  105. Kobayashi K, Sakamoto J, Kito T, Yamamura Y, Koshikawa T, Fujita M, et al. Lewis blood group-related antigen expression in normal gastric epithelium, intestinal metaplasia, gastric adenoma, and gastric carcinoma. Am J Gastroenterol. 1993;88:919–24.

    CAS  PubMed  Google Scholar 

  106. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21:2122–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23:184–91.

    CAS  PubMed  Google Scholar 

  108. Raulet DH, Gasser S, Gowen BG, Deng W,Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol. 2012;189:1360–71.

    CAS  PubMed  Google Scholar 

  110. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005;105:3615–22.

    CAS  PubMed  Google Scholar 

  111. Sallman DA, Brayer J, Sagatys EM, Lonez C, Breman E, Agaugué S, et al. NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica 2018;103:e424–6.

    PubMed  PubMed Central  Google Scholar 

  112. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    CAS  Google Scholar 

  114. Tawara I, Kageyama S, Miyahara Y, Fujiwara H, Nishida T, Akatsuka Y, et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 2017;130:1985–94.

    CAS  PubMed  Google Scholar 

  115. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994;84:3071–9.

    CAS  PubMed  Google Scholar 

  116. Childs RW, Carlsten M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov. 2015;14:487–98.

    CAS  PubMed  Google Scholar 

  117. Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016;16:310–20.

    PubMed  Google Scholar 

  118. Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res. 1998;4:2859–68.

    CAS  PubMed  Google Scholar 

  119. Boyiadzis M, Agha M, Redner RL, Sehgal A, Im A, Hou JZ, et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 2017;19:1225–32.

    CAS  PubMed  Google Scholar 

  120. Owa TY, oshino H, Okauchi T, Yoshimatsu K, Ozawa Y, Sugi NH, et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem. 1999;42:3789–99.

    CAS  PubMed  Google Scholar 

  121. Ozawa Y, Sugi NH, Nagasu T, Owa T, Watanabe T, Koyanagi N, et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur J Cancer 2001;37:2275–82.

    CAS  PubMed  Google Scholar 

  122. Assi R, Kantarjian HM, Kadia TM, Pemmaraju N, Jabbour E, Jain N, et al. Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 2018;124:2758–65.

    CAS  PubMed  Google Scholar 

  123. Stuart SD, Schauble A, Gupta S, Kennedy AD, Keppler BR, Bingham PM, et al. A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metab. 2014;2:4.

    PubMed  PubMed Central  Google Scholar 

  124. Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med (Berl). 2011;89:1137–48.

    CAS  Google Scholar 

  125. Pardee TS, Anderson RG, Pladna KM, Isom S, Ghiraldeli LP, Miller LD, et al. A phase I study of CPI-613 in combination with high-dose cytarabine and mitoxantrone for relapsed or refractory acute myeloid leukemia. Clin Cancer Res. 2018;24:2060–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15:3094–102.

    CAS  PubMed  Google Scholar 

  127. Ottmann OG, Müller-Tidow C, Krämer A, Schlenk RF, Lübbert M, Bug G, et al. Phase I dose-escalation trial investigating volasertib as monotherapy or in combination with cytarabine in patients with relapsed/refractory acute myeloid leukaemia. Br J Haematol. 2019;184:1018–21.

    PubMed  Google Scholar 

  128. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012;119:3917–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009;113:6206–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Martínez-Cuadrón D, Boluda B, Martínez P, Bergua J, Rodríguez-Veiga R, Esteve J, et al. A phase I-II study of plerixafor in combination with fludarabine, idarubicin, cytarabine, and G-CSF (PLERIFLAG regimen) for the treatment of patients with the first early-relapsed or refractory acute myeloid leukemia. Ann Hematol. 2018;97:763–72.

    PubMed  Google Scholar 

  132. Michaelis LC. Cytotoxic therapy in acute myeloid leukemia: not quite dead yet. Hematol Am Soc Hematol Educ Program. 2018;2018:51–62.

    PubMed  PubMed Central  Google Scholar 

  133. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–53.

    CAS  PubMed  Google Scholar 

  134. Pollyea DA. New drugs for acute myeloid leukemia inspired by genomics and when to use them. Hematol Am Soc Hematol Educ Program. 2018;2018:45–50.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81500118 and 61501519), the China Postdoctoral Science Foundation funded project (Project No. 2016M600443), and the Jiangsu Province Postdoctoral Science Foundation funded project (Project No.1701184B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Liu, Y., Pang, Y. et al. Emerging agents and regimens for treatment of relapsed and refractory acute myeloid leukemia. Cancer Gene Ther 27, 1–14 (2020). https://doi.org/10.1038/s41417-019-0119-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0119-5

This article is cited by

Search

Quick links