Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cellular and Molecular Biology

Approval of DFMO for high-risk neuroblastoma patients demonstrates a step of success to target MYC pathway

Abstract

The “undruggable” MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting MYC pathway as therapeutic approaches in cancer treatment.
Fig. 2: ODC1 knockout effect vs DFMO (eflornithine) effect.

Similar content being viewed by others

References

  1. Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science. 2019;363:1170–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Prim. 2016;2:16078.

    Article  PubMed  Google Scholar 

  3. Moreno L, Barone G, DuBois SG, Molenaar J, Fischer M, Schulte J, et al. Accelerating drug development for neuroblastoma: summary of the second neuroblastoma drug development strategy forum from innovative therapies for children with cancer and International Society of Paediatric Oncology Europe Neuroblastoma. Eur J Cancer. 2020;136:52–68.

    Article  CAS  PubMed  Google Scholar 

  4. Yu AL, Gilman AL, Ozkaynak MF, Naranjo A, Diccianni MB, Gan J, et al. Long-Term follow-up of a phase III study of ch14.18 (Dinutuximab) + cytokine immunotherapy in children with high-risk neuroblastoma: COG study ANBL0032. Clin Cancer Res. 2021;27:2179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Bufalo F, De Angelis B, Caruana I, Del Baldo G, De Ioris MA, Serra A, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl J Med. 2023;388:1284–95.

    Article  PubMed  Google Scholar 

  6. Heczey A, Xu X, Courtney AN, Tian G, Barragan GA, Guo L, et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat Med. 2023;29:1379–88.

    Article  CAS  PubMed  Google Scholar 

  7. Machy P, Mortier E, Birkle S. Biology of GD2 ganglioside: implications for cancer immunotherapy. Front Pharm. 2023;14:1249929.

    Article  CAS  Google Scholar 

  8. Goldsmith KC, Park JR, Kayser K, Malvar J, Chi YY, Groshen SG, et al. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat Med. 2023;29:1092–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oesterheld J, Ferguson W, Kraveka JM, Bergendahl G, Clinch T, Lorenzi E, et al. Eflornithine as postimmunotherapy maintenance in high-risk neuroblastoma: externally controlled, propensity score-matched survival outcome comparisons. J Clin Oncol. 2024;42:90–102.

    Article  CAS  PubMed  Google Scholar 

  10. Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA. 1993;90:7804–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68:9735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19:23–36.

    Article  CAS  PubMed  Google Scholar 

  13. Singh S, Quarni W, Goralski M, Wan S, Jin H, Van de Velde LA, et al. Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models. Sci Adv. 2021;7:eabj5405.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA. 2003;100:8164–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Llombart V, Mansour MR. Therapeutic targeting of “undruggable” MYC. EBioMedicine. 2022;75:103756.

    Article  CAS  PubMed  Google Scholar 

  17. Kovalova M, Baraka JP, Mik V, Jorda R, Luo L, Shao H, et al. A patent review of cyclin-dependent kinase 7 (CDK7) inhibitors (2018-2022). Expert Opin Ther Pat. 2023;33:67–87.

    Article  CAS  PubMed  Google Scholar 

  18. Meyskens FL Jr, Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res. 1999;5:945–51.

    CAS  PubMed  Google Scholar 

  19. Sherr CJ. A new cell-cycle target in cancer - inhibiting cyclin D-dependent kinases 4 and 6. N. Engl J Med. 2016;375:1920–3.

    Article  CAS  PubMed  Google Scholar 

  20. Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell. 2019;178:1189–204.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu R, Chen X, Kang S, Wang T, Gnanaprakasam JR, Yao Y, et al. De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. Sci Adv. 2020;6:eabc4275.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Puleston DJ, Baixauli F, Sanin DE, Edwards-Hicks J, Villa M, Kabat AM, et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell. 2021;184:4186–202.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy. 2016;8:1097–117.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JY was supported by American Cancer Society-Research Scholar (130421-RSG-17-071-01-TBG, JY), National Cancer Institute (1R01CA229739-01, 1R01CA266600-01A1, JY), and the American Lebanese Syrian Associated Charities (ALSAC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. JY is a Subject Editor for the British Journal of Cancer.

Author information

Authors and Affiliations

Authors

Contributions

JY conducted the literature review, wrote and edited the paper.

Corresponding author

Correspondence to Jun Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J. Approval of DFMO for high-risk neuroblastoma patients demonstrates a step of success to target MYC pathway. Br J Cancer 130, 513–516 (2024). https://doi.org/10.1038/s41416-024-02599-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02599-6

Search

Quick links