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In light of the disappointing termination of clinical trials with potent complex | inhibitors, such as IACS-010759, justification for
oxidative phosphorylation inhibitors and mitochondrial targeting strategies has been called into question. Consideration of these
agents’ potency, tissue selectivity and toxicity demonstrate what lessons can be learned from this failure and where new

opportunities lie.
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The field of cancer metabolism has evolved greatly over the last
100 years, from the seminal discovery of aerobic glycolysis in
tumours to more recent evidence that respiration is not
inconsequential and is frequently enhanced in cancer. More
specifically, as dependencies on oxidative phosphorylation
(OXPHOS) appear prevalent in a variety of aggressive cancer
types, the development of OXPHOS inhibitors through targeting
the electron transport chain has shown promising pre-clinical
efficacy [1]. However, termination of clinical trials in oncology
utilising electron transport chain complex | selective inhibitors
BAY87-2243, ASP4132, and most recently 1ACS-010759, due to
dose-limiting toxicities, has raised questions on the clinical
viability of such approaches [2-4].

IACS-010759 was developed as a highly potent complex |
inhibitor and demonstrated promising anti-cancer efficacy in
multiple animal models within a moderate safety window.
However, Yap et al. have carefully reported the results of two
phase | clinical trials of IACS-010759 in patients with advanced
solid tumours (23 patients), some with OXPHOS sensitive
mutations, and refractory acute myeloid leukaemia (AML) (17
patients). IACS-010759 had unacceptable toxicities including
elevated blood lactate, lactic acidosis, vomiting, and peripheral
neuropathy; resulting in early trial termination [4]. Dose-related
toxicities prohibited maintenance of target plasma levels, with
only 1 patient achieving a partial response.

The extremely narrow, if any, therapeutic window of IACS-
010759, is likely attributed to its highly potent, on-target complex |
inhibition, which operates on a nanomolar range in vitro, similar to
toxins targeting complex | e.g., rotenone. Excessive inhibition of
mitochondrial respiration is clearly associated with a glycolytic shift
towards increased lactate production and lactic acidosis, a common
adverse event with IACS-010759. However, other less potent
OXPHOS inhibitors such as metformin, nitric oxide and arsenic
trioxide, have been widely used in clinics for decades for indications
outside of oncology and have established safety profiles [2]. Many
moderate OXPHOS inhibitors assessed in oncology clinical trials

have demonstrated safe administration and tolerability with other
therapies [5]. Moderate OXPHOS inhibitor and antimalarial drug,
atovaquone, which specifically targets complex lll, produced an
anti-cancer effect in vitro at clinically achievable plasma concentra-
tions and retrospective analysis in AML patients correlated higher
atovaquone dosing with lower relapse rates [6]. Additionally, the
metabolic plasticity of cancers may limit the therapeutic window of
OXPHOS inhibitors as monotherapies, but their use in combination
therapies, specifically to target cancer stem cells and chemotherapy
resistant cancers has been evaluated extensively preclinically.
Treatment with complex | inhibitor OPB-51602 demonstrated re-
sensitisation to tyrosine kinase inhibitors in vitro, and also resulted
in significant tumour regression and metabolic responses in
patients with secondary resistance to epidermal growth factor
receptor inhibitors in a phase 1 trial [7].

The clinical applications of OXPHOS inhibitors can extend beyond
anti-proliferative chemotherapies. Tumour hypoxia, which results
from an imbalance between oxygen demand and delivery within
the chaotic vasculature of solid malignancies, is strongly implicated
in radiation therapy resistance. Modest reductions in cellular oxygen
consumption, modelled to be approximately 30% can increase local
oxygen availability in tumours to alleviate hypoxia and improve
radiosensitivity [8]. Reducing cellular oxygen consumption can be
achieved through inhibition of the electron transport chain and
several moderate OXPHOS inhibitors have demonstrated tumour
reoxygenation and metabolic radiosensitization in preclinical
models (Fig. 1a), including papaverine, an antispasmodic drug
found to also inhibit complex | [9]. Such strategies would require
adequate drug levels in tumours and a subsequent hypoxia
modifying effect only at the time of radiation and this can be
achieved with moderate OXPHOS inhibition. In non-small cell lung
cancer (NSCLC) patients, atovaquone delivered at standard oral
doses demonstrated significant increases in tumour reoxygenation
[10]. This study clearly demonstrated OXPHOS inhibition resulted in
a pharmacodynamic effect achieved within a safe clinical window.
Clinical trials in NSCLC patients assessing the efficacy of the
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EF5 staining, is completely abolished in HCT116 spheroids following treatment with atovaquone at 30 uM. The scale is 600 pm. b Schematic
overview of mitochondrial accumulation of triphenylphosphine (TPP+) based therapeutics, where R represents a drug conjugated to TPP+,
A%p is plasma membrane potential, and A¥m is mitochondria membrane potential.

combination of atovaquone or papaverine with either chemor-
adiotherapy or stereotactic body radiotherapy are ongoing
(NCT04648033, NCT03824327, NCT05136846).

Increasing the differential biological effect a drug has on its
target tissue is another strategy that can improve therapeutic
benefit without exacerbating healthy tissue toxicity. Drug design
strategies to mitigate this can include the addition of mitochon-
dria targeting moieties, such as triphenylphosphine (TPP+). TPP+
is a lipophilic molecule that possesses delocalised cations enabling
its accumulation in the mitochondria matrix according to the
charge differential across the plasma and mitochondria mem-
branes — see Fig. 1b [11]. More importantly, the mitochondrial
membrane potential has been documented to be substantially
higher in tumour cells than normal tissue and is associated with a
more invasive cellular phenotype, thus selectively rendering
tumour cells more susceptible to drug accumulation with TPP+
conjugates [11]. Gamitrinib, a TPP+ conjugate of a heat shock
protein-90 inhibitor, has demonstrated improved pharmacoki-
netics compared to its parent compound and possesses a safety
profile in rats and dogs several fold greater than its effective doses
in mice [12]. A phase I clinical trial of gamitrinib in advanced solid
tumours is ongoing and will provide insight to how the addition of
tumour mitochondria targeting strategies may improve therapeu-
tic outcomes (NCT04827810). In a lung carcinoma model, tumour
heterogeneity of TPP+ uptake was also observed, demonstrating
that total tumour targeting may not be achieved solely by this
strategy [13]. However, metabolic radiosensitizers do not require
OXPHOS inhibition in all regions of a tumour to observe hypoxia
modulation, indicating that TPP+ based agents can still provide
improved safety and therapeutic benefit in this context. Tumour
selectivity may also be improved through the use of antibody
drug conjugates (ADCs). Several ADCs have been approved and
are currently being developed for haematological malignancies,
for which OXPHOS dependencies can be frequent [1, 14].
Additionally, ADCs commonly utilise potent drug payloads, which
can be leveraged to trial toxic agents originally discarded in early
clinical trials or untested as single agents, as seen with the
development of Heidelberg Pharma’s alpha amanitin ADC [14]. It
will be essential to have pharmacodynamic endpoints in the
aforementioned trials, such as metabolic profiles for lactate and
mitochondrial effects, repeat biopsies for histology, and imaging
scans for hypoxia and its modulation.

While the early termination of IACS-010759 comes as disap-
pointing news in the development of metabolism targeting
therapies, there are several ways ahead for selectively targeting
mitochondria in cancer. Preclinical toxicology highlights the
problems of using different species which have subtle differences
in the susceptibility of their mitochondria at a target and tissue
level. Considerations for the impact of OXPHOS inhibition on the
tumour microenvironment, including proliferation of different
types of T-cells, should also be evaluated carefully in the
development of new inhibitors. Additional approaches may
include organotypic tissue cultures of normal susceptible tissues,
tumour organoids, and immunocompetent in vivo models such as
genetically engineered mouse models.
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