Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Identifying patients eligible for PARP inhibitor treatment: from NGS-based tests to 3D functional assays

Abstract

Within the past few years, poly (ADP-ribose) polymerase inhibitors (PARPi) have been added to the standard of care for cancer patients, mainly for those exhibiting specific genomic alterations in the homologous recombination (HR) pathway. Until now, patients who are eligible to receive PARPi have been identified using next-generation sequencing (NGS) of gene panels. However, NGS analyses do have some limitations, with a subset of patients with negative NGS-based results can exhibit a clinical benefit, responding positively to PARPi, despite the failure to detect dynamic and predictive biomarkers such as mutated BRCA1/2 genes. Furthermore, the sequencing of initial tumour does not allow to detect reversions or secondary mutations that can restore proficient HR and lead to PARPi resistance. Therefore, it is crucial to better identify patients who are likely to benefit from PARPi treatment. In this context, tumour models such as patient-derived xenografts or tumour-derived organoids could help to guide clinicians in their decision making as these models accurately mimic phenotypic and genetic tumour heterogeneity, and could reflect treatment response in an integrative manner. In this Perspective article, we provide an overview of the currently available NGS-based tests that enable the identification of patients who might benefit from PARPi, and outline breakthroughs and discoveries to expand this selection using 3D functional assays. Combining NGS with functional assays could facilitate the efficient identification of patients, thereby improving patient survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Next-generation sequencing workflow based on hybrid capture.
Fig. 2: Detection of gene impairments using companion diagnostic (CDx) tests.
Fig. 3: A proposed integrative approach to assess PARPi sensitivity.

Similar content being viewed by others

References

  1. Murai, J. & Pommier, Y. PARP trapping beyond homologous recombination and platinum sensitivity in cancers. Annu. Rev. Cancer Biol. 3, 131–150 (2019).

    Article  Google Scholar 

  2. Ray-Coquard, I., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Berger, R. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Moore, K., Colombo, N., Scambia, G., Kim, B.-G., Oaknin, A., Friedlander, M. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

  4. Ledermann, J., Harter, P., Gourley, C., Friedlander, M., Vergote, I., Rustin, G. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Pujade-Lauraine, E., Ledermann, J. A., Selle, F., Gebski, V., Penson, R. T., Oza, A. M. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. González-Martín, A., Pothuri, B., Vergote, I., Christensen, R. D., Graybill, W., Mirza, M. R. et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381, 2391–2402 (2019).

  7. Coleman, R. L., Oza, A. M., Lorusso, D., Aghajanian, C., Oaknin, A., Dean, A. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1949–1961 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robson, M., Im, S.-A., Senkus, E., Xu, B., Domchek, S. M., Masuda, N. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Litton, J. K., Rugo, H. S., Ettl, J., Hurvitz, S. A., Gonçalves, A., Lee, K.-H. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753–763 (2018).

  10. Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., Hall, M. J. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Bono, J., Mateo, J., Fizazi, K., Saad, F., Shore, N., Sandhu, S. et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382, 2091–2102 (2020).

  12. Mirza, M. R., Coleman, R. L., González-Martín, A., Moore, K. N., Colombo, N., Ray-Coquard, I. et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann. Oncol. 31, 1148–1159 (2020).

  13. Premarket Approval (PMA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P140020 (2020).

  14. Premarket Approval (PMA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p170019 (2020).

  15. Premarket Approval (PMA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p160018 (2020).

  16. Premarket Approval (PMA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P190014 (2020).

  17. Premarket Approval (PMA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p190032 (2020).

  18. Plon, S. E., Eccles, D. M., Easton, D., Foulkes, W. D., Genuardi, M., Greenblatt, M. S. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D’Andrea, A. D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5, 1137–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    Article  Google Scholar 

  21. Kubelac, P., Genestie, C., Auguste, A., Mesnage, S., Le Formal, A., Pautier, P. et al. Changes in DNA damage response markers with treatment in advanced ovarian cancer. Cancers 12, 707 (2020).

  22. Mirza, M. R., Monk, B. J., Herrstedt, J., Oza, A. M., Mahner, S., Redondo, A. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Hodgson, D. R., Dougherty, B. A., Lai, Z., Fielding, A., Grinsted, L., Spencer, S. et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer 119, 1401–1409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gillessen, S. & Bristow, R. G. The tip of the iceberg: predicting PARP inhibitor efficacy in prostate cancer. Lancet Oncol. 21, 17–19 (2020).

    Article  PubMed  Google Scholar 

  25. Gulhan, D. C., Lee, J. J.-K., Melloni, G. E. M., Cortés-Ciriano, I. & Park, P. J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet. 51, 912–919 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A. V. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hussain, M., Mateo, J., Fizazi, K., Saad, F., Shore, N., Sandhu, S. et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 383, 2345–2357 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Abida, W., Campbell, D., Patnaik, A., Shapiro, J. D., Sautois, B., Vogelzang, N. J. et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin. Cancer Res. 26, 2487–2496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Collins, A., Miles, G. J., Wood, J., MacFarlane, M., Pritchard, C. & Moss, E. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol. Oncol. 156, 251–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Powley, I. R., Patel, M., Miles, G., Pringle, H., Howells, L., Thomas, A. et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 122, 735–744 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Naipal, K. A. T., Verkaik, N. S., Ameziane, N., van Deurzen, C. H. M., Ter Brugge, P., Meijers, M. et al. Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clin. Cancer Res. 20, 4816–4826 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Meijer, T. G., Verkaik, N. S., Sieuwerts, A. M., van Riet, J., Naipal, K. A. T., van Deurzen, C. H. M. et al. Functional ex vivo assay reveals homologous recombination deficiency in breast cancer beyond BRCA gene defects. Clin. Cancer Res. 24, 6277–6287 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Tumiati, M., Hietanen, S., Hynninen, J., Pietilä, E., Färkkilä, A., Kaipio, K. et al. A functional homologous recombination assay predicts primary chemotherapy response and long-term survival in ovarian cancer patients. Clin. Cancer Res. 24, 4482–4493 (2018).

  35. Castroviejo-Bermejo, M., Cruz, C., Llop-Guevara, A., Gutiérrez-Enríquez, S., Ducy, M., Ibrahim, Y. H. et al. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol Med. 10, e9172 (2018).

  36. Michelena, J., Lezaja, A., Teloni, F., Schmid, T., Imhof, R. & Altmeyer, M. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat. Commun. 9, 2678 (2018).

  37. Farago, A. F., Yeap, B. Y., Stanzione, M., Hung, Y. P., Heist, R. S., Marcoux, J. P. et al. Combination olaparib and temozolomide in relapsed small cell lung cancer. Cancer Discov. 9, 1372–1387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hodgkinson, C. L., Morrow, C. J., Li, Y., Metcalf, R. L., Rothwell, D. G., Trapani, F. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Lallo, A., Frese, K. K., Morrow, C. J., Sloane, R., Gulati, S., Schenk, M. W. et al. The Combination of the PARP inhibitor olaparib and the WEE1 inhibitor AZD1775 as a new therapeutic option for small cell lung cancer. Clin. Cancer Res. 24, 5153–5164 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Parmar, K., Kochupurakkal, B. S., Lazaro, J.-B., Wang, Z. C., Palakurthi, S., Kirschmeier, P. T. et al. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 25, 6127–6140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, H., Xu, H., George, E., Hallberg, D., Kumar, S., Jagannathan, V. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 11, 3726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varanda, A. B., Martins-Logrado, A., Godinho Ferreira, M. & Fior, R. Zebrafish xenografts unveil sensitivity to olaparib beyond BRCA status. Cancers 12, 1769 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  43. Fazio, M., Ablain, J., Chuan, Y., Langenau, D. M. & Zon, L. I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat. Rev. Cancer 20, 263–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sato, T., Vries, R. G., Snippert, H. J., Wetering, M., van de, Barker, N., Stange, D. E. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Bleijs, M., van de Wetering, M., Clevers, H. & Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 38, e101654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. de Witte, C. J., Espejo Valle-Inclan, J., Hami, N., Lõhmussaar, K., Kopper, O., Vreuls, C. P. H. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 31, 107762 (2020).

    Article  PubMed  Google Scholar 

  48. Hill, S. J., Decker, B., Roberts, E. A., Horowitz, N. S., Muto, M. G., Worley, M. J. et al. Prediction of DNA repair inhibitor response in short term patient-derived ovarian cancer organoids. Cancer Discov. 8, 1404–1421 (2018).

  49. Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373.e10–386.e10 (2018).

    Article  Google Scholar 

  50. Driehuis, E., Hoeck, A., van, Moore, K., Kolders, S., Francies, H. E., Gulersonmez, M. C. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580–26590 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  51. Pauli, C., Hopkins, B. D., Prandi, D., Shaw, R., Fedrizzi, T., Sboner, A. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yan, H. H. N., Siu, H. C., Law, S., Ho, S. L., Yue, S. S. K., Tsui, W. Y. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, M., Mun, H., Sung, C. O., Cho, E. J., Jeon, H.-J., Chun, S.-M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 1–15 (2019).

    Article  Google Scholar 

  54. Arena, S., Corti, G., Durinikova, E., Montone, M., Reilly, N. M., Russo, M. et al. A subset of colorectal cancers with cross-sensitivity to olaparib and oxaliplatin. Clin. Cancer Res. 26, 1372–1384 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Esposito, M. T., Zhao, L., Fung, T. K., Rane, J. K., Wilson, A., Martin, N. et al. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat. Med. 21, 1481–1490 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Fritz, C., Portwood, S. M., Przespolewski, A. & Wang, E. S. PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev. 100696 (2020).

  57. Chandhok, N. S., Wei, W., Bindra, R., Halene, S., Shyr, Y., Li, J. et al. The PRIME Trial: PARP inhibition in IDH mutant effectiveness trial. A phase II study of olaparib in isocitrate dehydrogenase (IDH) mutant relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood 134, 3909 (2020).

  58. ClinicalTrials.gov. Olaparib and high-dose chemotherapy in treating patients with relapsed or refractory lymphomas undergoing stem cell transplant. https://clinicaltrials.gov/ct2/show/NCT03259503 (2020).

  59. ClinicalTrials.gov. Avatar-directed chemotherapy in treating patients with ovarian, primary peritoneal, or fallopian tube cancer. https://clinicaltrials.gov/ct2/show/NCT02312245 (2020).

  60. Peyraud, F. & Italiano, A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers 12, 1502 (2020).

  61. Dijkstra, K. K., Cattaneo, C. M., Weeber, F., Chalabi, M., van de Haar, J., Fanchi, L. F. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586.e12–1598.e12 (2018).

    Article  Google Scholar 

  62. Cattaneo, C. M., Dijkstra, K. K., Fanchi, L. F., Kelderman, S., Kaing, S., van Rooij, N. et al. Tumor organoid–T-cell coculture systems. Nat. Protoc. 15, 15–39 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: P.-M.M., L.P. Methodology: NA. Acquisition of data and writing: all authors. Administrative, technical, or material support: NA. Study supervision: P.-M.M., L.P.

Corresponding author

Correspondence to Laurent Poulain.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Data availability

Not applicable.

Competing interests

P.-M.M. was supported by the Cancer Institut Thématique Multi-Organisme of the French National Alliance for Life and Health Sciences (AVIESAN) Plan Cancer 2014-2019 (doctoral grant) and from the Comprehensive Cancer Center F. Baclesse. P.-M.M., L.-B.W., B.L. and L.P. are members of the “Réseau Normand d’Innovation Thérapeutique en Oncologie (ONCOTHERA)” network. “ONCOTHERA” European project is co-funded by the Normandy County Council and the European Union within the framework of the Operational Program ERDF/ESF 2014-2020. Work of the laboratory on ovarian cancer organoids is supported by Cancéropôle Nord-Ouest (“ORGRAFT” project), Ligue contre le Cancer (Calvados’s commitee), Fondation de l’Avenir (#AP-RM-19-020), the “Fondation ARC pour la recherche sur le cancer” (#PJA20191209649), and by the Normandy County Council and the European Union within the framework of the Operational Program ERDF/ESF 2014-2020 (“ORGATHEREX” and “ORGAPRED” projects).

Funding information

None.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morice, PM., Coquan, E., Weiswald, LB. et al. Identifying patients eligible for PARP inhibitor treatment: from NGS-based tests to 3D functional assays. Br J Cancer 125, 7–14 (2021). https://doi.org/10.1038/s41416-021-01295-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01295-z

This article is cited by

Search

Quick links