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NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a
proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot
mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal
architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on
the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in
both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status.
While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and
survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent
evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as
well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target
multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research.
The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be
translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid
malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and

dynamics, prognostic implications, and therapeutic targeting.
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INTRODUCTION
RAS proteins are a family of 21-kDa proteins that are at the heart
of signaling pathways controlling various biological processes
such as cell proliferation, differentiation, and survival. This family
of proteins are specialized guanine nucleotide-binding and
hydrolyzing molecules that belong to the small G-protein (GTP-
ase) superfamily. They are encoded by highly related RAS genes,
namely, KRAS (Kirsten rat sarcoma viral oncogene homolog), NRAS
(neuroblastoma RAS viral oncogene homolog), and HRAS (Harvey
rat sarcoma viral oncogene homolog), encoding 4 homologous
proteins (sharing 85% sequence homology); H-RAS, K-RAS4A and
K-RAS4B (two splice variants of K-RAS), and N-RAS [1]. Oncogenic
mutations in RAS GTPases render the proteins constitutively GTP
bound and active, promoting oncogenesis. However, the level of
expression and activation of each specific RAS protein leads to
different cellular responses and oncogenic phenotypes [2, 3l.
Three well-studied RAS effectors are PI3-kinase (PI3K), Raf, and Ral-
GDS proteins. Among these, the abnormal activation of the Raf/
MEK/ERK pathway and the PI3K/Akt/mTOR cascade are strongly
implicated in the development and maintenance of RAS-mutated
cancers [4, 5].

RAS activating point mutations are found in nearly 20% of
human cancers [5] and are highly prevalent in myeloid
malignancies where they are often associated with a more

proliferative phenotype [6, 7] and a more aggressive disease
[8, 9]. While RAS mutation status has long been integrated into
clinical decision making in patients with solid tumors, the clinical
significance of RAS mutations in myeloid malignancies has only
recently begun to be fully appreciated. Although considered as
‘undruggable’ in the past decade [10], significant progress in
understanding RAS biology has brought us a step closer to
identifying novel strategies for targeting RAS-mutated cancers,
particularly in the context of myeloid malignancies.

This review aims to provide a detailed exploration of RAS
mutations in myeloid malignancies including prevalent occur-
rences in acute myeloid leukemia (AML), myelodysplastic syn-
dromes (MDS), chronic myelomonocytic leukemia (CMML),
juvenile myelomonocytic leukemia JMML), and myeloproliferative
neoplasms (MPN). We address various challenges that have
remained unanswered throughout the past decade. First, is how
RAS mutations are not all equal; the type of the RAS mutated
protein, the amino acid position, as well as the type of
substitutions, varies across human cancers, including myeloid
malignancies. Second, we decipher the cooperating genetic
events with RAS mutations which modulate the resulting
phenotype in mouse models. Third, we cover the clonal
architecture and dynamics of RAS mutations. Lastly, we discuss
variable prognostic implications depending on disease context,
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mutational type and the type of treatment administered. This
highlights the challenge of RAS targeting therapies; due to their
structural and biochemical properties, oncogenic RAS remains
difficult targets for drug discovery.

PREVALENCE AND TYPE OF ONCOGENIC MUTATIONS

RAS mutations are prevalent in 10-30% of myeloid malignancies,
with higher frequency in pediatric than adult diseases [11]. Among
which, NRAS mutations are the most frequent, followed by KRAS
mutations, whereas HRAS mutations are negligible in hematologic
malignancies. The prevalence of N/KRAS mutations varies across
different types of myeloid malignancies. According to recent
studies using high-throughput sequencing technologies and
covering the entire N/KRAS coding sequences (that is, exons 2, 3
and 4) [5, 12-17], MDS/MPN, notably CMML and JMML, harbor the
highest incidence of N/KRAS mutations, ranging from 15% to 20%
of cases for each gene. In adult MDS, both N- and KRAS mutations
are identified in 2-3% of cases [15]. In AML, the overall prevalence
of RAS mutations ranges between 15% and 20%. RAS mutations
are particularly enriched in specific subsets of AML, such as AML
with inv(3)/t(3;3) and AML with inv(16)/t(16;16), where these
mutations are identified in around 30% and 35-40% of cases,
respectively [15, 18-20]. In MPN, the prevalence of RAS mutations
is very low in polycythemia vera (PV) and essential thrombo-
cythemia (ET) (<1%), but can reach 6-8% in primary myelofibrosis
(PMF) [21, 22] (Fig. 1).

Although more than 150 mutation sites have been reported in
RAS genes, the most prevalent mutational hotspots are G12, G13,
and Q61, accounting for approximately 80-95% of NRAS and
40-95% of KRAS mutations [5, 12-17]. NRAS and KRAS exhibit
different hotspot preferences for G12, G13, Q61, and other non-
canonical codons, such as T58, G60, K117, and A146, as illustrated
in Fig. 2. Recent experimental evidence supports the notion that
RAS mutations harbor allele-specific structural and biochemical
properties, contributing to variability in biological consequences
[23, 24].

RAS mutation patterns vary across different types of myeloid
malignancies and even across disease subtypes. In AML, NRAS
mutations equally affect G12, G13, and Q61 codons, each of the 3
amino acids representing about one third of all mutations, while
KRAS mutation distribution displays less Q61 mutations and more
rare variants, such as those involving K117 and Q146 codons. In
core binding factor (CBF) AML particularly in AML with inv(16)/
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Fig. 1 Prevalence of NRAS and KRAS mutations in myeloid
malignancies. Percentage of mutated cases based on recent studies
using high-throughput sequencing technologies and covering the
entire N/KRAS coding sequence. AML: 1105 patients [12, 16]; MDS:
2957 patients [15]; CMML: 1540 patients (399 patients [15] and 1141
patients from unpublished personal data; JMML: 117 patients
[13, 14, 17]. AML acute myeloid leukemia, MDS myelodysplastic
syndromes, CMML chronic myelomonocytic leukemia, JMML juve-
nile myelomonocytic leukemia.
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t(16;16), codon Q61 is much more frequently mutated than other
codons. In contrast, NPMT mutations preferentially associate with
NRAS G12/13 but not with NRAS Q61 mutations. In adult chronic
myeloid disorders, including CMML and MDS, NRAS mutations are
predominantly found at G12 codon, accounting for 50-70% of
cases, while KRAS mutations show much more diversity in terms of
amino acid positions. In JMML, more than 80% of N/KRAS
mutations affect G12 and G13 codons (Fig. 2). Altogether, RAS
mutation patterns in myeloid malignancies are likely shaped by
quantitative and qualitative differences in the activation of
downstream signaling pathways, as suggested in the “sweet spot”
model proposed by Li et al. [3]. Although the underlying biological
mechanisms of codon-preferential RAS mutations in specific types
of myeloid malignancies remain poorly understood, it is likely that
distinct mutagenesis and/or selection processes are involved in
different clinical settings. Properly identifying and understanding
the roles and nuances of different RAS mutations could potentially
guide targeted therapies and ultimately improve patient
outcomes.

MODELING RAS MUTATIONS AND THEIR COOPERATION WITH
OTHER GENE MUTATIONS

Ras mouse models have been extensively employed in hemato-
logic malignancies with the aim of conducting in vivo experiments
for disease understanding and preclinical trials. Table 1 provides
an updated compilation of the recent Ras mouse models and their
respective phenotype. Distinct Ras mutations exhibit variable
behavior, for instance, the induction of heterozygous Kras®'2P/+
expression in the hematopoietic system alone through Mx1-Cre
leads to a rapid and highly penetrant myeloproliferative disease
(MPD) modeling human MDS/MPN, but does not lead to AML
progression [25]. In parallel, induction of the heterozygous
Kras®'*®7+ mutation in the hematopoietic compartment also led
to an MDS/MPN phenotype similar to Kras®'?® mice, but with a
significantly delayed onset [23]. In contrast, endogenous hetero-
zygous Nras expression exhibits a modest and variable
myeloid phenotype, although mice that are homozygous for a
conditional Nras®'?® knock-in allele model aggressive MPN [26].
When expressed in the hematopoietic compartment, Nras®'?°
alone induces a MPD similar to Kras®'*® but with significantly
longer disease latency and lower penetrance [27-30]. These
findings collectively suggest that discrepancies in the mutation
type, and/or expression levels of distinct Ras proteins influence
the severity of myeloid growth dysregulation [4]. The cooperation
of Ras mutations with other genetic alterations, such as Tet2,
Dnmt3a, or Tp53 mutations, has also been recently investigated in
mouse models (Table 1). Complete Dnmt3a loss enhances self-
renewal in hematopoietic stem cells (HSCs), impairs differentia-
tion, but is not sufficient to drive leukemogenesis in mice; specific
disease progression depends on additional genetic alterations,
such as Ras mutations [31, 32] Thus, complete loss of Dnmt3a
synergizes with Kras®'?°, expediting disease progression and
culminating in approximately 30% of mice developing AML [30]
(Table 1). Concurrently, Nras®’?®, in conjunction with hetero-
zygous Dnmt3a loss, promotes AML onset in one-third of the
induced mice, providing a potentially more biologically pertinent
representation given the prevalent heterozygosity of DNMT3A
mutations in human disease. Alternatively, hotspot Dnmt3a"8’8"
mutation with Nras®'?® led to a much earlier onset in mice, shorter
lifespan, and more severe AML-like disease [33]. This suggests that
the type of DNMT3A mutation, along with acquisition of RAS
mutations, could significantly promote the leukemogenic trans-
formation and proliferation of HSCs.

Tet2™’~ and Nras®'® in hematopoietic cells synergize in vivo,
engendering a lethal CMML-like disease with elevated self-
renewal potential compared to mice harboring either mutation
alone. Upon acquisition of the Nras mutation, clonal expansion is
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Fig.2 Distribution of NRAS and KRAS mutation type in myeloid malignancies. Distribution of the most frequently mutated codons in CMML
(n=1540), AML (n =1105), JMML (n = 117) and MDS (n = 2975). The color code of each hotspot mutation is indicated on the right of each pie

chart. The data are derived from the same patient cohorts as in Fig. 1.

observed, precipitating leukemia progression and heightened
sensitivity to GM-CSF [34]. These findings were validated in the
context of Tet2 haploinsufficiency and Ras mutations where they
collaborate to disrupt hematopoietic stem and progenitor cells
(HSPCs), inducing a lethal and significantly penetrant CMML-like
disorder. The concurrent Nras and Tet2 mutations also evoke
cytokine hypersensitivity in HSPCs [35].

Blood Cancer Journal (2024)14:72

In the context of Nras®'?®* associated with p53 mutations,

Nras®'?®* x p53~/~ mice developed mixed AML and T-cell
malignancy, whereas Nras®'?®; p53%1729+ mjce rapidly devel-
oped a lethal AML with full penetrance and a median survival of
~80 days. Additionally, Nras®'?®*; p53%172¥+ HSpCs show
imbalanced myelopoiesis and lymphopoiesis. It has also been
reported that mutant p53 and oncogenic Nras cooperatively
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dysregulate hematopoietic transcription factor networks and
promote inflammation via NfkB [36]. This demonstrates that Nras
mutations cooperate with p53 mutants to promote AML in a much
more important manner than either mutation alone.

BCOR mutations have been identified in various hematologic
malignancies including MDS and AML. Bcor inactivation in aged
mice was not sufficient for leukemogenesis but was associated
with a significant increase in the absolute number of bone marrow
myeloid progenitors. In contrast, Bcor® mice in cooperation with
Kras®'*® " developed a leukemia-like phenotype (Table 1).
Additionally, the survival of Bcor*®Kras®'?®* mice was signifi-
cantly reduced compared with Kras®'*®* controls indicating that
Bcor inactivation resulted in functional co-operation with onco-
genic Kras to initiate leukemia in vivo [37].

CUXT mutations are common in myeloid neoplasms and
significantly co-occur with oncogenic mutations in RAS, PTPNTI1,
or CBL [38]. In murine models, Cux1 deficiency gives rise to MDS-
like phenotype but falls short of driving AML independently.
However, mice bearing Nras®'?® and Cux? knockdown concur-
rently exhibited AML development, an outcome absent in mice
with either mutation alone. The oncogenic influence of Ras drives
an increase in self-renewal in Cux7-deficient HSPCs. Conversely,
Cux1 knockdown intensifies Ras signaling by mitigating negative
regulators of RAS/PI3K signaling. Table 1 describes the phenotype
of the resulting Cux1°":Nras®™*® mice, which mimic an AML-like
disease compared to Cux1™%Nras®"?? mice which are more MDS/
MPN similar to that of JMML/CMML, indicating that the further
decrease of Cux1 expression drives a more penetrating phenotype
in cooperation with Nras®'?® to drive AML [39]. Of note, all double
mutant mice in Table 1 have significantly reduced survival as
compared to mice harboring each mutation alone.

Taken together, murine models in myeloid malignancies have
resulted in highly significant advancements in understanding how
Ras mutations serve as cooperating mutations with other disease-
initiating mutations. While Ras mutations alone do contribute to a
significant myeloproliferative phenotype, they require cooperation
with other mutations, more particularly those of tumor suppressor
genes to drive leukemogenesis. The above examples underscore
that the specific type of the cooperating mutation, in conjunction
with Ras mutations, can yield diverse pathologic outcomes.

CLONAL ARCHITECTURE AND EVOLUTION

The consequence of the type and order of mutation acquired
leads to the HSC being more or less likely to facilitate subsequent
acquisition of mutations and leukemia development. Recent
research prompted inquiry into how such clones facilitate the
acquisition of other mutations in signaling pathways, such as RAS,
to enhance their clonal fitness [40, 41]. In the context of age-
associated myeloid malignancies, RAS mutations tend to emerge
exclusively in the context of other clonal hematopoiesis mutations
suggesting that these late events may cooperate with founder
mutations to drive the progression of clonal hematopoiesis
toward malignancy, aligning with a stepwise model of leukemo-
genesis [40, 42].

In clonal hematopoiesis of indeterminate potential (CHIP), RAS
mutations only occur secondarily in the presence of other
mutations strongly correlated with the apparition of a hematolo-
gic malignancy. Unlike most age-associated MDS/MPN where RAS
mutations are often observed to be subclonal, JMML is essentially
a RASopathy arising through the acquisition of de novo signaling
mutations or in the context of germline predisposition syndromes.
Recent evidence suggests that very few somatic events are
required for JMML leukemogenesis and confirmed the predomi-
nant role of RAS pathway alterations in disease initiation. RAS-
activating mutations might have distinct effects on epigenome
remodeling possibly correlated with disease aggressiveness
[42-45]. CMML however, is a RASopathy of the elderly often
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found in a background of epigenetic and splicing alterations. In
the context of AML, N/KRAS mutations may function as an early/
initiating event but mostly as cooperating mutations acquired
during disease progression. Regarding MDS and MPN, RAS
mutations mainly appear as a late event, driving progression
and transformation to AML.

Various studies have attempted to replicate the sequential
addition of Ras mutations within different mutational contexts.
For instance, HSCs acquiring Runx1::Runx1T1 gain a competitive
advantage, which leads to an expansion in the number of HSCs,
thereby increasing the pool of cells capable of acquiring
additional mutations like Kras. Ultimately, this promotes the
development of leukemia and mimics the disease phenotype in
mice. Conversely, HSCs that only acquire a Kras mutation,
whether alone or in combination with RunxI:Runxi1TI1, are
depleted due to loss of quiescence and self-renewal. This
observation may elucidate why signaling mutations like RAS
are not typically detected in pre-leukemic HSCs in AML
patients; they tend to manifest as a later event in the
leukemogenesis process. Ras mutations may necessitate
cooperation with other mutations to confer this particular
phenotype and are insufficient to do so as a solitary mutation
[46]. This leads to the conclusion that the timing of emergence
of Ras mutations in the clonal evolution is vital for the cell’s
fate to transformation. However, earlier studies argue that Ras
mutations alone partially enhance competitiveness of the HSC
and promote pre-leukemic clonal expansion. It has been
reported that Nras®™™* has a bimodal effect on HSCs in
mice, increasing self-renewal potential and reducing division in
one HSC subset while increasing division and reducing self-
renewal in another HSC subset. Short-lived but rapidly dividing
Nras®'?®* HSCs presumably outcompete wiId-tgpe HSCs and
are replenished over time by quiescent Nras®'2”’* HSCs [47].
Given that heterogeneity within HSCs is likely governed by
various mechanisms of gene expression control, epigenetics
and RNA splicing, variations in methylation levels and patterns
give rise to stochastic transcriptional heterogeneity among
genetically identical cells which may or may not protect the
cell from external stress and the potential of acquiring further
mutations. This heterogeneity could also elucidate the differing
outcomes observed when HSCs are transformed by the same
oncogenic event such as N/KRAS mutations. This suggests that
the expansion of an NRAS mutant clone may be contingent on
a specific cellular state [48], or possibly a chromatin state
depending on which epigenetic factors are mutated [40].

Dormancy may be another factor influencing the emergence of
RAS subclones. Dormant HSCs are normally in a quiescent state
and are resistant to acute stress, but chronic stress such as
infections, metabolic stress, or cytokine-related inflammation can
exhaust them. Leukemic HSC are reported to co-opt physiological
mechanisms of HSC sustenance to overcome this exhaustion,
dominating normal HSCs in the niche and rendering them more
fit. Moreover, mutant HSCs such as Tet2~’~ or Dnmt3a~’~ are also
reported to secrete IL1-f and IFN-y, allowing mutated clones to
outcompete non-mutated clones. The niche thus becomes
predominantly mutated, giving rise to both dormant, and active
HSCs, which are more susceptible to proliferative signals [48].
Taken together, this raises the following hypotheses: does the
exposure of mutant HSCs to chronic stress lead to epigenetic
modifications rendering the clone more susceptible to acquire a
RAS mutation? Does the harsh inflammatory milieu lead to a
selection pressure of the RAS-mutated clone to evolve and
expand? Could this explain why in JMML, a single initiating driver
event is sufficient to drive leukemogenesis? Perhaps the cellular
state, and cytokine milieu in utero is favorable for the competitive
phenotype of the mutation, and the environment was predis-
posed to an infection or inflammation which rendered the clone
to expand.

SPRINGER NATURE
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The literature currently presents a contradictory perspective
regarding whether RAS mutations can induce clonal expansion
independently or if they require a predisposed mutational context
to manifest. Nevertheless, the arrangement of clonal populations
may potentially have a direct, causal influence on the prognosis
and treatment of myeloid malignancies [49]. Conversely, it is
plausible that clonal architecture and the microenvironment
might serve as a surrogate for an underlying process that itself
contributes to chemoresistance or relapse. This highlights the
need for more comprehensive research of the time-dependent
consequences of Ras mutation emergence in the clonal archi-
tecture of leukemogenesis. Novel knock-in models facilitating the
sequential introduction of mutations hold significant promise for
future advancements. Additionally, deciphering the unique
molecular signatures linked to pre-leukemic mutations in HSCs
could pave the way for potential therapeutic advances aimed at
selectively targeting the expansion of preleukemic stem cells.
Exploring evolutionary dynamics through single-cell technologies
and mathematical modeling holds the potential to enhance our
comprehension of leukemic transformation and treatment resis-
tance. This approach may also pave the way for the development
of innovative therapeutic strategies and the identification of
valuable biomarkers.

PROGNOSTIC IMPLICATIONS

N/KRAS mutations are significant contributors to the pathogen-
esis, progression, and often prognosis of myeloid malignancies.
They are quite infrequent in the context of CHIP, with relatively
low variant allele frequencies at 1% and 2%, respectively. The
late emergence of a RAS-mutated clone however, is associated
with a 12-fold elevated risk of developing a myeloid malignancy
(Table 2). While further research is needed to strengthen this
finding, it implies that individuals harboring a RAS-mutated CHIP
clone require careful clinical monitoring due to their high-risk
profile [40].

In MDS, RAS mutations are correlated with more aggressive
disease subtypes, higher IPSS-M risk, and reduced event-free
survival (EFS) and overall survival (OS). RAS-mutated MDS patients
are also reported to have an OS of only 16 months versus
92 months in non-RAS-mutated MDS patients [8]. This has been
validated in a separate cohort where patients have an increased
risk of leukemic transformation, primarily associated with NRAS
rather than KRAS mutations [15] (Table 2). One hypothesis is that
the rarer occurrence of KRAS mutations may make their prognostic
impact more challenging to determine. These two mutations may
possess distinct biochemical properties and functional conse-
quences giving rise to distinct prognostic implications. Never-
theless, the presence of both NRAS and KRAS mutations appears to
exert a substantial toll on OS, as supported by various
independent studies [50-53]. This emphasizes the importance of
screening for RAS mutations both at diagnosis and during follow-
up, enabling the identification of high-risk patients and the
personalization of therapeutic strategies. N/KRAS mutations do not
seem to influence responses to anthracycline-based chemothera-
pies, as observed in AML. Knowledge is scarcer regarding their role
in responses to hypomethylating agents and combination
therapies such as azacitidine (AZA) and venetoclax (Ven). The
elusive nature of their prognostic relevance in this context may be
due to the low frequency of RAS-mutated patients in princeps
studies and a lack of dedicated investigations [8, 54, 55].

In CMML, RAS mutations are more prevalent especially in the
proliferative form of the disease, at around 20-30% [56]. While RAS
mutations appear to play a pivotal role in the transformation of
CMML to AML, only NRAS mutations seem to exhibit a significant
association with adverse clinical outcomes and are included in
dedicated scores such as CPSS-Mol score, as well as the CMML
transplant score. NRAS-mutated CMML patients encounter
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reduced response rates to HMA and allogeneic hematopoietic
stem cell transplantation (allo-SCT), resulting in higher relapse
rates and ultimately shorter OS (Table 2) [57-59]. Unlike NRAS,
KRAS mutations are only represented in the IPSS-M score.
Although conducted on a very large patient cohort, the IPSS-M
score predominantly encompasses MDS but also, to a lesser
extent, CMML and other MDS/MPN. While both N/KRAS mutations
increase the risk of acute transformation in CMML, only mutant
NRAS has been conclusively shown to influence EFS and OS in
CMML patients.

In PMF, RAS mutations remain infrequent but are associated
with higher bone marrow cellularity, increased splenomegaly,
elevated circulating blast percentages, and additional driver
mutations. However, in multivariate analysis, RAS mutations are
not retained as prognostic factors for acute transformation
independently of well-established markers, such as high-risk
cytogenetic abnormalities and other alterations such as mutations
in ASXL1, EZH2, SRSF2, IDH1/2, or U2AFT1 [21, 22, 60].

Despite their rarity, N/KRAS mutations in PMF are associated
with reduced responses to ruxolitinib, necessitating the monitor-
ing of RAS mutational status for all PMF patients. This assessment
may become a routine part of monitoring to guide therapeutic
decision-making. JAK2 inhibitor therapies in PMF are primarily
symptom-focused and have limited impact on bone marrow
fibrosis and mutation allele burden. A recent study reported that
the presence of RAS and CBL mutations was linked to poorer
symptom improvement and spleen size reduction, suggesting
potential resistance to JAK inhibitors. This resistance may stem
from two mechanisms: one study showed that a RAS mutation
acquired within a JAK2Y®"F mutated clone confers resistance to
JAK inhibition, while another study highlighted PDGF-BB's role in
maintaining MEK/ERK activation in the presence of ruxolitinib
(Table 2) [21, 22, 61, 62].

In adult AML, RAS mutations do not appear to significantly
influence survival in patients subjected to intensive anthracycline-
based chemotherapy, and accordingly have not been included in
the European LeukemiaNet genetic risk classifications [63, 64].
However, emerging evidence suggests that RAS mutations may
hold prognostic significance in AML patients treated with non-
intensive therapies. Indeed, RAS mutations have been associated
with higher relapse risk post-HMA treatment, such as AZA, or the
Ven-AZA combination [54, 65-68]. KRAS but not NRAS mutations
were also found to be associated with inferior survival in AML,
particularly in the context of HMA-based therapies (Table 2) [69].
Furthermore, a recent study validated a new molecular prognostic
risk signature, called mPRS, tailored for AML patients treated with
HMA and Ven. This mPRS, based on the mutational status of 4
genes (NRAS, KRAS, FLT3, and TP53), can accurately segregate 3
groups of AML patients with distinct outcomes. Notably, N/KRAS
mutations appear to negatively impact patient outcomes [70].

In JMML, a subset of RAS-mutated cases, combined with
favorable prognostic factors; normal fetal hemoglobin levels for
age and high platelet counts, have long-term survival without the
need for allo-SCT. However, NRAS mutations in JMML are often
associated with higher relapse rates, warranting adjusted post-
transplant treatment strategies, including low-intensity graft
versus host disease (GVHD) prophylaxis to enhance the graft
versus leukemia (GVL) effect and reduce the risk of relapse.
Conversely, KRAS-mutated JMML exhibit lower relapse rates,
necessitating classical high-intensity GVHD prophylaxis (Table 2).

In pediatric AML, there is limited data regarding the potential
influence of RAS mutations on clinical outcomes. The frequently
altered tyrosine kinase and RAS/MAPK/MEK pathways, identified in
30-90% of pediatric AML patients, contributes to around 20% of
relapses in this group [71, 72]. The prognostic impact of RAS
mutations in pediatric AML has not been systematically investi-
gated, but RAS-mutated pediatric AML seem to exhibit greater
chemosensitivity compared to non-RAS-mutated AML [73, 74].

SPRINGER NATURE



D. Alawieh et al.

RAS mutations appear to negatively influence treatment
responses following non-intensive therapies. In AML, RAS muta-
tional status plays a pivotal role in the response to FLT3 inhibitors.
For instance, RAS/MAPK pathway mutations emerge in approxi-
mately one third of AML patients experiencing disease progres-
sion on gilteritinib therapy [75]. A parallel study on crenolanib
therapy in relapsed/refractory FLT3-mutated AML also identified
epigenetic and genetic alterations, including NRAS mutations,
associated with resistance. This resistance may be due to mutant
RAS facilitating downstream ERK signaling reactivation in the
presence of FLT3 inhibitors. RAS mutations also affect responses to
venetoclax therapy by activating the Ras/Raf/MEK/ERK pathway,
leading to increased MCL-1 compared to BCL2, thereby conferring
resistance to BCL2 inhibitors [67, 68]. Collectively, this emphasizes
the importance of early monitoring for RAS mutations upon
initiating FLT3 inhibitor therapy, which could provide a crucial
window for proactive intervention. It also suggests that targeting
both MCL1 and BCL2 with venetoclax could be an alternative
approach [9, 76].

In the context of IDH inhibitors such as ivosidenib and
enasidenib, it is established that the existence of a RAS co-
mutation is linked to inherent [77], but also acquired resistance
[78]. Several hypotheses that might explain this resistance include
the potent oncogenic signals of RAS activation diminishing 2-HG
dependency and the contribution of RAS pathway-activating
mutations to a sustained differentiation block following drug
initiation. RAS mutations may also activate alternative pathways,
change cellular metabolism, and induce epigenetic alterations, all
of which may lead to resistance against IDH inhibitors by
promoting cell survival and reducing drug sensitivity [77, 79-81].

Altogether, the impact of RAS mutations is far from uniform,
with its significance heavily contingent upon the specific
hematologic malignancy and the treatment modalities employed.
Nonetheless, the presence of a RAS mutation correlates with an
increased relapse risk in patients receiving non-intensive or
targeted therapies.
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RAS TARGETING THERAPEUTIC STRATEGIES

Over the last decade, significant progress has been made in the
development of targeted therapies in myeloid malignancies.
However, molecularly targeted therapies with clinical efficacy are
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RAS direct inhibitors:
Sotorasib (AMG-510)
Adagrasib
(MRTX849)
MRTX1133
JAB-23000
JAB-21822
RMC-6236
RM-018
ARS-1620
AZD4625
ARS-853
BI-0474
BI-2852
JDQ443
LY3537982
YL-15293
TH-Z835

MEK inhibitors:
Cobimetinib
Trametinib
Selumetinib
Binimetinib
Pimasertib
Refametinib

MRNA s

proliferation
differentiation

Fig.3 Recapitulative figure highlighting novel and ongoing therapeutic strategies for targeting RAS. The binding of growth factors to the
tyrosine kinase receptor leads to its phosphorylation and the binding to the Grb2/Sos complex. RAS is controlled by a loop of an inactive,
GDP-bound state and an active, GTP-bound state. Activation of RAS occurs by the binding Guanine Nucleotide Exchange Factor (GEF)
proteins, including SOS, which initiate the exchange of GDP for GTP. The GTP-bound RAS activates a cascade mechanism of downstream
signaling molecules including RAF and PI3K, which regulates different cellular functions such as cell proliferation, differentiation, and cell
growth/survival. This figure summarizes the druggable pathways and targets in clinical trials or that are potential therapies for future use. Four
critical therapeutic axes are highlighted: direct RAS inhibitors, MEK inhibitors, PI3K inhibitors and PLK1 inhibitors. Targets labeled in green are
those currently in clinical trials in hematologic diseases. Targets labeled in blue are FDA-approved in the oncology field. Preclinical and clinical
drugs targeting RAS-mutant in solid tumors are labeled respectively in black and red. RTK receptor tyrosine kinase, PROTACs proteolysis-

targeting chimeras, siRNA small interfering RNA.

G12D, G13C, G13D, Q61H), NRAS (Q61X) and HRAS mutants, is also
underway, with optimistic outcomes [84, 85]. Nonetheless, the
applicability of such molecules in the field of hematology has still
been restricted due to various factors. First, given that specific
NRAS inhibitors are not readily available for all mutation types, the
relatively higher prevalence of NRAS mutations in myeloid
malignancies as compared to solid tumors represents a limitation.
Second, patients may harbor multiple subclones, each carrying a
distinct RAS mutation. This genetic heterogeneity renders the
therapeutic targeting of RAS mutations even more challenging. In
this context, the use of inhibitors designed to target multiple
mutations, such as RMC-6236, may be a more suitable approach.
Such broad-spectrum inhibitors have the potential to address the
diversity of RAS mutations and offer a more comprehensive
strategy for tackling these genetic alterations in myeloid
malignancies.

Beyond targeting the mutated RAS protein directly, alternative
strategies aim to prevent its activation by inhibiting upstream
signaling molecules such as SOS1. In addition, the development of
PROTACs (Proteolysis-Targeting Chimeras), bi-functional mole-
cules designed to induce proteasomal degradation of specific
target proteins, are under investigation and have shown to be
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efficient in preclinical studies targeting RAS-mutant proteins
[86-89]. RNA-based approaches, such as small interfering RNAs
(siRNAs), are yet another strategy to silence the expression of
mutated RAS at the mRNA level (Fig. 3). The siRNA inhibition
strategy is a technological challenge, given the heterogeneous
distribution of K/NRAS mutations in myeloid malignancies, and
refers more towards ultra-personalized medicine than to a global
management strategy [89].

Besides targeting the RAS-mutated clones, the development of
therapies targeting the inflammatory mediators may also be
beneficial to improve survival, symptoms, and quality of life for
patients with RAS-mutated myeloid malignancies. This has been
recently illustrated in CMML where KRAS-mutated monocytes
showed constitutive activation of the NLRP3 inflammasome,
increased IL-1B release, and a specific inﬂammatorg cytokine
signature. Treatment of a CMML patient with a KRAS®'?® mutation
using the IL-1 receptor blocker anakinra inhibited NLRP3
inflammasome activation, reduced monocyte count, and
improved patient clinical status, allowing bridging to allo-SCT [90].

Given the fact that dormancy and the pro-inflammatory
microenvironment of mutant-HSCs impact the subclonal emer-
gence of RAS-mutated clones, it is likely that the proliferation of a
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RAS-mutated clone may be contingent upon a distinct cellular
state and microenvironment [48], indicating that a more effective
therapeutic strategy could involve targeting both the microenvir-
onment and the RAS-mutated clone. This dual approach should be
considered in the future to prevent the emergence of resistance
and reduce the risk of relapse. In summary, several innovative
therapies and strategies are being explored either in preclinical
studies or in early clinical development in solid tumors (Fig. 3). The
potential for these targeted therapies to transform the treatment
of myeloid malignancies remains to be investigated in combina-
tion with other molecules.

CONCLUSION

This review highlights key insights on RAS mutations in myeloid
malignancies from the past decade, encompassing their pivotal
role in disease pathogenesis, prognosis, and therapy. While they
may not always act as independent prognostic factors, they
significantly influence clinical outcomes, disease progression, and
survival. Different RAS proteins (NRAS vs. KRAS) may also
differentially impact prognosis, in addition to their presence along
concurrent mutations. Recent evidence indicates that RAS muta-
tions also drive resistance to targeted therapies, especially FLT3,
IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine
combination, necessitating early monitoring for intervention and
exploring the clonal evolution of such subclones. While mouse
models, despite limitations, offer vital platforms for studying Ras
mutations and their interplay with other driver genetic alterations,
our understanding of the intricate relationship between leukemic
clones, the emergence of the RAS subclone, along the inflamma-
tory microenvironment warrants further exploration. Advances in
pharmacologic strategies have paved the way for potential
therapeutic interventions targeting such mutations. Nonetheless,
there is an uncharted territory regarding the application of solid
tumor therapies to hematologic malignancies, promising novel
trials in the future. The heterogeneity of RAS mutations
emphasizes the need for personalized treatments and a meticu-
lous screening of individual mutation profiles for effective
therapeutic approaches.
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