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The cerebellum, through its connectivity with the cerebral cortex, plays an integral role in regulating cognitive and affective
processes, and its dysregulation can result in neurodevelopmental disorder (NDD)-related behavioural deficits. Identifying
cerebellar-cerebral functional connectivity (FC) profiles in children with NDDs can provide insight into common connectivity profiles
and their correlation to NDD-related behaviours. 479 participants from the Province of Ontario Neurodevelopmental Disorders
(POND) network (typically developing = 93, Autism Spectrum Disorder = 172, Attention Deficit/Hyperactivity Disorder = 161,
Obsessive-Compulsive Disorder = 53, mean age = 12.2) underwent resting-state functional magnetic resonance imaging and
behaviour testing (Social Communication Questionnaire, Toronto Obsessive-Compulsive Scale, and Child Behaviour Checklist –
Attentional Problems Subscale). FC components maximally correlated to behaviour were identified using canonical correlation
analysis. Results were then validated by repeating the investigation in 556 participants from an independent NDD cohort provided
from a separate consortium (Healthy Brain Network (HBN)). Replication of canonical components was quantified by correlating the
feature vectors between the two cohorts. The two cerebellar-cerebral FC components that replicated to the greatest extent were
correlated to, respectively, obsessive-compulsive behaviour (behaviour feature vectors, rPOND-HBN=−0.97; FC feature vectors,
rPOND-HBN=−0.68) and social communication deficit contrasted against attention deficit behaviour (behaviour feature vectors,
rPOND-HBN=−0.99; FC feature vectors, rPOND-HBN=−0.78). The statistically stable (|z| > 1.96) features of the FC feature vectors,
measured via bootstrap re-sampling, predominantly comprised of correlations between cerebellar attentional and control network
regions and cerebral attentional, default mode, and control network regions. In both cohorts, spectral clustering on FC loading
values resulted in subject clusters mixed across diagnostic categories, but no cluster was significantly enriched for any given
diagnosis as measured via chi-squared test (p > 0.05). Overall, two behaviour-correlated components of cerebellar-cerebral
functional connectivity were observed in two independent cohorts. This suggests the existence of generalizable cerebellar network
differences that span across NDD diagnostic boundaries.
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INTRODUCTION
The cerebellum, while classically viewed as a structure exclusively
linked to motor control, is now understood to have a much
broader scope of activity. Roughly 30 years of research have
contributed strong evidence supporting that the cerebellum plays
an integral role in the regulation of cognitive and affective
processes, largely through its communication between its poster-
ior lobe and higher-order and association cerebral cortices [1–3].

Structural [4, 5] and functional imaging [6, 7] in humans, as well as
tract-tracing studies in preclinical models [8], have contributed to
this evidence.
Studies have shown that dysregulation of cerebellar pathways

implicated in cognitive and affective processing can lead to
behavioural differences in these domains. In mice, Kelly et al. [9]
demonstrated that chemogenetic inhibition of right crus I and the
posterior vermis led to disinhibition of the medial prefrontal
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cortex (under normal function, the cerebellar cortex provides
inhibitory regulation of downstream cerebral targets via its
GABAergic Purkinje cells). These disinhibited mice were observed
to have attenuated social behaviour in multiple rodent behaviour
tests [9]. In humans, dysfunction of the posterior cerebellum due
to injury or reduced blood supply has also been associated with
reduced social and cognitive function. In a study of perinatal
cerebellar injury in premature infants, Limperopoulos et al.
observed cognitive deficits, language deficits, and externalizing
behaviours issues at 2 years of age in nearly half of the infants
with cerebellar injury [10]. Given that the cerebellum undergoes
rapid development in the first two postnatal years of an infant’s
life [11], it is conceivable that dysfunction in this region during a
period of major growth would lead to persistent functional
impairment.
Such studies have spurred further investigation into the

potential relationship between changes in cerebellar functional
connectivity (FC) and neurodevelopmental disorders (NDDs), and
cognitive and affective differences observed with cerebellar
dysfunction. For instance, meta-analyses by D’Mello and
Stoodley have elucidated convergent volumetric and FC findings
that consistently associate cerebellar changes with certain
behaviours related to autism spectrum disorder (ASD) in autistic
individuals [1]. It has also been shown that perinatal cerebellar
injury carries the greatest relative likelihood for ASD develop-
ment of any noninheritable factor [12]. ASD falls within the
broader spectrum of NDDs, encompassing conditions such as
attention-deficit/hyperactivity disorder (ADHD) and obsessive-
compulsive disorder (OCD). Investigations involving individuals
with these conditions have also demonstrated an association
between cerebellar atypicalities and relevant behavioural
differences [13–17]. Increasingly, researchers, spurred by institu-
tions such as the National Institute for Mental Health [18] and
projects such as PRISM [19], have investigated brain-behaviour
relations across clinical diagnoses for NDDs rather than within
them due to emerging evidence demonstrating a lack of
distinctive aetiology, set of behaviours, or biology that separates
these disorders [20–26].
Given the demonstrated role of the cerebellum in regulating

cognitive and affective behaviours, investigating differences in FC
of the cerebellum and its main downstream target, the cerebral
cortex, across a range of NDDs may provide a richer characteriza-
tion of how differences in cerebellar-cerebral FC relate to
behaviour/cognition. FC can be indirectly probed using resting-
state functional magnetic resonance imaging (rs-fMRI), which uses
blood oxygen level-dependent signal as a proxy measurement of
underlying spontaneous neural activity [27, 28]. Findings may then

be validated by repeating the investigation in an independent
cohort, comprised of subjects recruited by a different consortium.
The aim of this study was therefore to investigate whether

discernable patterns of cerebellar-cerebral FC as defined by their
relationship to behaviour can be identified among NDD children,
in two independent cohorts.

METHODS
Participants (original cohort)
Participants were recruited through the Province of Ontario Neurodeve-
lopmental Disorders (POND) Network. The POND Network spans four
institutions within Ontario, Canada: The Hospital for Sick Children, Toronto;
Holland Bloorview Kids Rehabilitation Hospital, Toronto; McMaster
Children’s Hospital, Hamilton; Queen’s University, Kingston; and Lawson
Health Research Institute, London. The research and data collection
protocol were developed by the POND Executive Committee and
approved by the Research Ethics Boards at each site. Recruitment of TD
participants (i.e., participants with no neurodevelopmental, neurological, or
psychiatric diagnosis or first-degree family history thereof, and born after
35 weeks gestation) was promoted via advertisements in hospitals, on
social media, and in public transit.
Included participants had no contraindications for MRI, were not

included in intervention arms of clinical investigations stemming from
the POND Network and possessed a sufficient degree of English
comprehension to follow instructions in testing protocols and provide
informed consent. The participants included in this study required a
primary diagnosis of ASD, ADHD, or OCD or typically developing (TD).
Standardized behavioural assessments verified clinical diagnosis using
established metrics: Autism Diagnostic Observation Schedule-2 [29] and
Autism Diagnostic Interview-Revised [30] for ASD; Parent Interview for
Child Symptoms [31] for ADHD; and the Kiddie-Schedule for Affective
Disorders and Schizophrenia [32] and the Children’s Yale-Brown Obsessive
Compulsive Scale [33] for OCD.
747 participants from the POND Network received rs-fMRI scans

between 2010 and 2020. Of those, 603 scans survived quality control
(QC) filtering (described below) and were not included in intervention arms
of studies. Participants were then excluded if they did not possess any of
the following behavioural questionnaire scores: Child Behaviour Checklist
[34] Attentional Problems subscore (CBCL), Social Communication Ques-
tionnaire [35] (SCQ) total score, and Toronto Obsessive Compulsive Scale
[36] (TOCS) total score. These scores were selected because they probe
core behavioural symptoms associated with ASD, ADHD, and OCD, and
were minimally collinear (partial correlation between any pair of the three
scores was less than 0.3) [37]. Weschler Intelligence Scale for Children IQ
was also examined [38]. Following exclusion based on missing behaviour
scores, 479 participants remained (Table 1).

Participants (replication cohort)
Data from the Healthy Brain Network (HBN) were used as an independent
replication cohort [39]. HBN is an ongoing initiative to amass behavioural,

Table 1. Demographics and clinical characteristics of study participants.

POND HBN P-value

N 479 556

Age (mean (SD)) 12.15 (3.16) 10.81 (3.04) <0.001

Diagnosis (%) <0.001

TD 93 (19.4) 113 (20.3)

ADHD 161 (33.6) 374 (67.3)

ASD 172 (35.9) 61 (11.0)

OCD 53 (11.1) 8 (1.4)

Sex = Male (%) 345 (72.0) 371 (66.7) 0.076

Child Behaviour Checklist - Attentional Problems Subscore (mean (SD)) 63.46 (10.44) 63.18 (10.15) 0.66

Social Communication Questionnaire - Total Score (mean (SD)) 10.30 (9.09) 7.53 (5.06) <0.001

Toronto Obsessive-Compulsive Scale - Total Score (mean (SD)) −16.97 (29.07) N/A

Child Behaviour Checklist - Obsessive-Compulsive Subscore (mean (SD)) N/A 49.51 (9.82)

Weschler Intelligence Scale for Children IQ (mean (SD)) 102.88 (17.27) 100.72 (16.89) 0.073
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cognitive and lifestyle phenotypic data, genetic data, and data from
structural and functional imaging modalities from 10,000 New York-city
area children aged 5 to 21. Participants were recruited from the
community using advertisements targeting families with concerns about
NDD-related symptoms in their child. Inclusion and exclusion criteria were
described in Alexander et al. [39].
Imaging data from 953 HBN participants were downloaded and pre-

processed identically to the POND data (described below). 556 of those
participants survived QC filtering and had complete records for the CBCL
and SCQ. TOCS was not administered to the HBN cohort; thus, the
Obsessive-Compulsive subscore from CBCL [40] (CBCL-OCS) was used in its
place. In a community sample of 16,718 subjects, CBCL-OCS was observed
to correlate with TOCS total score with a Spearman correlation of 0.51 [36].

Imaging protocol (original cohort)
All rs-fMRI data were collected between June 2012 and September 2020.
160 of 479 (33.4%) scans took place on the 3-Tesla Siemens Trio TIM with a
12-channel head coil, while the remaining 319 (66.6%) scans took place on
the 3-Tesla Siemens Prisma scanner with a 20-channel head and neck coil,
following a hardware upgrade in 2016 (scanner upgrade occurred at the
Queen’s site in 2019). Structural and functional imaging were performed.
The parameters for the T1-weighted images were as follows: for Trio, TR/
TE= 2300/2.96 ms, FA = 9o, FOV= 192 × 240 × 256mm, 1.0 mm isotropic
voxels; for Prisma, TR/TE= 1870/3.14 ms, FA = 9o, FOV= 192 × 240 ×
256mm, 0.8 mm isotropic voxels. Scan duration was 5minutes for both
scanners. The parameters for the rs-fMRI scans were as follows: for Trio, TR/
TE= 2340/30ms, FA = 70o, FOV= 224 × 224 × 140mm, 3.5 mm isotropic
voxels; for Prisma, TR/TE= 1500/30ms, FA = 70o, FOV= 222 × 222 ×
150mm, 3.0 mm isotropic voxels. Scan duration was 5min for both
scanners. During the resting-state scans, participants scanned in the Trio
scanner viewed a movie of their choice during scanning, while participants
scanned in the Prisma viewed the Inscapes naturalistic movie paradigm
[41]. It has been shown that while movie and Inscape viewing conditions
result in reduced motion and fewer participants who fall asleep mid-scan
relative to a static image (e.g. fixation cross), inter- and intra-network
connectivity metrics may be influenced by viewing condition [41, 42].
Therefore, viewing condition was incorporated as a covariate in the
analysis.

Imaging protocol (replication cohort)
Scans were collected using a Siemens Trio TIM or Siemens Prisma scanner
at three sites: Rutgers University Brain Imaging Center (3-Tesla Trio),

CitiGroup Cornell Brain Imaging Center (3-Tesla Prisma), and the HBN
Diagnostic Research Center in Staten Island, New York (1.5-Tesla Trio). The
protocols can be found in Alexander et al. [39] and on the HBN Updates
page (http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
Updates.html). Participants viewed a fixation-cross while undergoing
scanning [39].

Image pre-processing
Pre-processing and segmentation were performed identically on the
replication cohort data from HBN. Results included in this manuscript come
from pre-processing performed using fMRIPrep (RRID:SCR_016216) [43], a
Nipype-based tool [44]. For detailed methods, see Supplemental Methods.
After fMRIPrep, Analysis of Functional NeuroImages (AFNI) was used to
perform simultaneous nuisance signal regression, volume censoring, and
high-pass temporal filtering [45]. In particular, the 36-parameter (six
motion parameters, WM, CSF, and global signal, along with their derivative
and quadratic terms) model was used [46], with sinc/cosine bases for high-
pass filtering (>0.008 Hz) and censoring volumes with a framewise
displacement exceeding 0.5 mm or DVARS exceeding 0.5%.
Quality control was performed following pre-processing. For each scan,

volumes were censored if framewise displacement was greater than
0.5 mm or DVARS > 0.5% [47]. Scans were excluded if more than 1/3 of
volumes were censored. The remaining scans were visually inspected to
assess whether cerebellar coverage of BOLD signal was acceptable; in
other words, if there were no areas of missing signal (when observed, this
typically occurred at the caudal cerebellum and was likely due to the
subject’s placement in the scanner). Scans missing BOLD signal in parts of
the cerebellum were also excluded.

Segmentation
To measure FC, a parcellation to define regional signal was required. The
applied parcellation was the combination of complementary studies by
Yeo et al. and Buckner et al. (Fig. 1) which derived atlases of the cerebellum
and cerebral cortex based on resting-state FC in healthy brains from the
Human Connectome Project [48, 49]. The Yeo-Buckner atlas used in this
study was comprised of the 7-region-of-interest (ROI) parcellation from the
cerebellum combined with the 17-ROI parcellation from the cerebral
cortex. Since the ROIs were bilateral, different labels were assigned to left
and right-hemispheric sections of regions, resulting in a total of 48 ROIs.
The 17-ROI parcellation was used for the cerebral cortex to provide finer
spatial resolution. The 7-ROI parcellation was used for the cerebellum
because the 17-ROI parcellation failed to register in a consistent manner

Fig. 1 Functionally-derived cerebrum [48] and cerebellum [49] parcellation used in this study. Cerebellar parcellation was overlaid over a
flat-map [95]. The control network region of the cerebellar parcellation was originally labelled as “Frontoparietal Network” in Buckner et al. but
was renamed in this study to correspond with the region labels of the Yeo et al. cerebral parcellation.
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across all subjects (some small midline ROIs were erased or reduced to a
few voxels in roughly one-third of all subjects).
Cerebellar ROIs were segmented using multiple automatically generated

templates (MAGeT) [50], with 23 randomly selected scans used as
templates. Cerebral cortical structures were segmented using surface
registration using the CIVET pipeline (version 2.1.0) [51, 52], which registers
scans into a common space, applies corrections for radiofrequency
inhomogeneity artifacts [53, 54] and labels cortical regions as either grey
matter, white matter, or cerebrospinal fluid [52].

Functional connectivity
The measurement of functional connectivity across participants and the
subsequent statistical analyses were conducted using the programming
language R (v 3.5.1). Code is available upon request. For each resting-state
scan, ROI-level BOLD signal was defined as the mean time series of the
voxels within each ROI. Pearson’s correlation was calculated between the
time series of each pair of ROIs to generate a correlation matrix for each
scan. Correlation matrices were then transformed to partial correlation
matrices, which can be calculated using the following equation [55]:

Π ijf g ¼ � ϒ ijf g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϒ iif gϒ jjf g
p (1)

for distinct i and j (Π iif g ¼ 1). Π is the partial correlation matrix, and
ϒ ¼ Σ�1, where Σ is the Pearson correlation matrix. Partial correlation
represents the correlation between two signals in a subspace that is
orthogonal to all other signals; hence, it is a measurement of the
correlation between two signals that are independent of the influence of
other signals in the network [56]. It has been shown that, compared to full
correlation measurements (i.e., Pearson correlation), partial correlations
have greater accuracy in identifying connections in networks simulated
from dynamic causal modelling principles [57], and have greater
reproducibility for various network-wide measures when tested on real
data [58]. The correlation data were controlled for differences between
scan sites using the ComBat empirical Bayes package in R [59]. Sex and
viewing condition were controlled by linearly regressing out their effects
on the correlation data. Age was not regressed out in order to later test for
age differences between clusters of subjects—see Spectral Clustering
subsection for details. The resulting residuals were used in this study as our
measure of functional connectivity (FC).

Canonical correlation analysis
The aim of this work was to investigate the existence of stable and
discriminable cerebellar-cerebral FC patterns of expression that presented
with specific behavioural profiles in children with NDDs. Thus, we sought a
maximally correlated transformation of the FC and behavioural data, which
can be achieved using canonical correlation analysis (CCA) [60, 61]. The FC
data consisted of the Fisher-transformed [62] pairwise partial correlations
between ROIs (i.e., FC features), while the behavioural data consisted of the
centred and normalized questionnaire scores. CCA was performed in R
using the packages CCA (v 1.2.1) and CCP (v 1.1) [63].
Similar to Drysdale et al. [64], CCA was performed using only FC features

that correlated with behaviour (Spearman’s correlation) with a t-test-
derived p-value less than 0.05. This step was performed to improve the
correlation between FC and behaviour by eliminating weakly-correlating
FC features. To assess the effect of applying a more stringent FC-behaviour
threshold on the results, the analysis was repeated at a different threshold
choice (p < 0.01). Behaviour and FC coefficients were largely similar
regardless of threshold choice (Supplementary Fig. 1).
Given the cerebellum’s major role in coordinating motor function in

response to sensorimotor feedback, a supplemental analysis was
performed to characterize the correlation between cerebellar-cerebral FC
and sensory-related behaviours. Short Sensory Profile [65] (SSP) total score
was included among the examined behaviour scores and CCA was re-run.
Replication was not assessed for this supplemental analysis given the
absence of SSP or a related measure of the same domain among the
behaviour tests administered to the HBN participants.
Statistical significance of canonical variates extracted from CCA was

measured using a permutation test approach with 10,000 shuffled samples.
Statistical stability of canonical coefficients was assessed by bootstrap
sampling the data, re-running CCA 10,000 times, storing the canonical
coefficients from all canonical variates after each iteration, measuring the
standard deviation of each coefficient over all iterations, then dividing the
original non-bootstrap coefficients by the bootstrap-measured standard

deviation. This resulted in a z-score for each coefficient. Larger z denoted a
more stable coefficient, and |z| > 1.96 was used as the threshold for
statistical stability [60, 61]. Procrustes transformations were applied with
each re-sampling to account for rotations in the data relative to the original
data matrices [60].

Spectral clustering
To investigate whether diagnosis-specific cerebellar-cerebral FC profiles
were observable across NDD and TD subjects, spectral clustering was
performed on the statistically significant canonical variates (CVs) of the FC
data using the SNFtool package in R [66]. The affinity matrix A was
calculated by applying a weighting kernel (kernel dampening coefficient
μ ¼ 0:3, neighbourhood width = 10) to the matrix of subject FC CV
loading values. Clustering was then performed on the Laplacian matrix
L ¼ D� A, where D is the diagonal matrix D iif g ¼

P

j A ijf g [66]. The first k
eigenvectors of L were used to cluster the data using the k-means
algorithm [67, 68]. A range of k from 2 to 10 were investigated.
Clustering discriminability was assessed by plotting the Calinhara-

Harabasz index as a function of number of clusters [69]. Cluster stability
was assessed by measuring the distribution of the Rand Index and
adjusted Rand Index [70] between the original clustering and clustering
following bootstrap sampling without replacement for 10,000 resamples
(adjusted Rand Index corrects for the number of expected agreements by
chance for a given number of clusters). Following selecting the optimal
number of clusters for the data, the inter-cluster differences in age, IQ, and
in-scanner motion (measured as framewise displacement) were assessed
using ANOVAs, and in diagnostic category counts using Pearson’s chi-
squared test.

Replication cohort analysis
The measurement of FC and the ensuing CCA and spectral clustering were
performed identically in the replication cohort, except for CBCL-OCS being
used to assess obsessive-compulsive behaviour severity rather than TOCS
total score. To evaluate the similarity between CVs from the original POND
cohort and the replication HBN cohort, Pearson’s correlation was measured
between the canonical coefficient vectors of the POND and HBN datasets.
Behaviour vectors consisted of the coefficients for CBCL Attentional
Problems subscore, SCQ total score, and TOCS total score for the POND
CVs, and CBCL Attentional Problems subscore, SCQ total score, and CBCL-
OCS for the HBN CVs. FC vectors consisted of stable features common to
both sets of CVs (FC features calculated from the POND and HBN cohorts
were different due to the thresholding step implemented prior to CCA [64].
Prior to correlating between datasets, FC coefficients were recalculated
over a parcellation in which subdivisions of the same network were
combined into a single bilateral region (e.g., combining anterior and
posterior default mode network regions from the left and right brain into
one default mode region). Replication was achieved if a CV from the POND
cohort strongly correlated to a CV from the HBN cohort, with respect to
their behaviour coefficient vectors and their FC coefficient vectors (e.g.
POND CV 1’s behaviour and FC coefficient vectors strongly correlated to
HBN CV 2’s behaviour and FC coefficient vectors).

RESULTS
Canonical variates—original cohort
Two statistically significant and one non-significant CV were
identified (CV 1, p= 0.0390; CV 2, p= 0.0359; CV 3, p= 0.811)
(Fig. 2A). CV 1 and CV 2 were most weighted for one behavioural
score over the other two, as indicated by the relative size of the
canonical coefficients and the observed statistical stability
(CBCL Attentional Problems subscore for CV 1 and TOCS total score
for CV 2—see Methods—‘Canonical correlation analysis’ for how
canonical coefficient stability was defined). CV 3 was characterized
by two stable coefficients of opposite sign, with the absolute value
of the SCQ total score coefficient being greater than the CBCL
Attentional Problems subscore coefficient (Supplementary Table 1,
Supplementary Fig. 2). The 3 CVs were subsequently referred to as
the Attention Deficit CV, the Obsessive-Compulsive CV, and the
Social Communication Deficit contrasted to Attention Deficit
(“Social-versus-Attention”) CV. The canonical coefficients are inter-
preted as the amount by which a given measure changes given a 1
unit change in its paired canonical variate. For example: a 1 unit
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increase in the first CV of the functional connectivity data was
associated with an 0.81 unit decrease in the normalized CBCL
Attentional Problems subscore in the first CV of the behaviour data.
The FC profiles for each CV can be characterized by their observed

stable coefficients (Fig. 2B). The Attention Deficit CV and Obsessive-
Compulsive CV were generally characterized by stable FC features
between cerebellar attentional and control network regions and
cerebral dorsal attention, default mode, and control network
regions. Stable FC was also observed for features involving limbic
network regions, somatomotor network regions (predominantly
cerebellar somatomotor region), and visual network regions
(predominantly cerebellar visual network region for the Obsessive-
Compulsive CV). The Social-versus-Attention CV was characterized
by stable FC mostly between cerebellar control, visual, somatomo-
tor, and attentional network regions and cerebral default mode and
attentional network regions. No patterns suggesting any lateraliza-
tion among the stable FC features were observed (Supplementary
Table 2). Most stable coefficients shared the same sign as their
respective stable behaviour score. In the case of the Social-versus-
Attention-CV, this was true for the stable behaviour score with the
largest absolute coefficient (SCQ total score). This indicated a
positive correlation between FC feature partial correlation and
phenotypic severity for most of the stable FC features.

Sensory-related behaviour analysis—original cohort
Incorporating SSP total score into the analysis demonstrated that
sensory-related behaviour correlated with functional connectivity

involving the cerebellar and cerebral somatomotor network
regions. Only the first CV of four was statistically significant on
permutation testing (CV 1, p= 8.60 × 10−3) and bore a stable
coefficient for SSP total score (Fig. 3). Two other CVs also bore
stable SSP total score coefficients but were not statistically
significant (CV 3, p= 0.905; CV 4, p= 0.903). The three CVs with
stable coefficients for SSP total score (CV 1, 3, and 4) had a greater
proportion of stable FC features involving the somatomotor
cerebellar or cerebral network regions than CV 2 (CV 1, 38.1% of
stable features; CV 2, 13.3%; CV 3, 35.3%; CV 4, 19.2%).

Clustering—original cohort
Clusters of participants based on behaviour-correlated cerebellar-
cerebral FC were not distinct, and no diagnosis-specific cluster was
observed. Participants were clustered using their loading values
for the Attention Deficit and Obsessive-Compulsive FC CVs since
these components were significant on permutation testing (Fig. 4).
The three-cluster solution resulted in the largest Calinhara-
Harabasz index value and median adjusted Rand index value
(Supplementary Fig. 3). Participants across all four diagnostic
categories were represented in each cluster. Across the three
clusters, the proportion of participants per diagnostic category
was not significantly different from the proportion across the
whole POND cohort (cluster one, X2(df) = 5.40 (3), p= 0.15; cluster
2, X2(df) = 4.74 (3), p= 0.19; cluster three, X2(df) = 5.70 (3),
p= 0.13). Clusters were not well-isolated in FC CV space,
suggesting weakness in the evidence towards a clustering

Fig. 2 Canonical correlation analysis on POND and HBN cohort data. A Standardized canonical coefficients for behaviour scores measured
from the original (i.e., POND) and replication (i.e., HBN) cohort. Errors bars indicate the standard deviation of canonical coefficients
recalculated over 10,000 bootstrap resamples. * denotes |z| > 1.96, where z is the ratio of a coefficient to its standard error. If |z| > 1.96, the
coefficient is considered to be stable. B Canonical coefficients for functional connectivity features. * denotes stable coefficients. The top row
pertains to the original cohort and the bottom row pertains to the replication cohort. CBCL Child Behaviour Checklist, SCQ Social
Communication Questionnaire, TOCS Toronto Obsessive-Compulsive Scale, DAN dorsal attention network, VAN ventral attention network,
DMN default mode network, Sal salience network.

F. Morgado et al.

5

Translational Psychiatry          (2024) 14:173 



structure in behaviour-correlated cerebellar-cerebral FC in NDDs.
The three clusters were not significantly different on in-scanner
motion or age, as measured by ANOVAs (Supplementary Table 3),
but were significantly different with respect to IQ (F2,291= 3.53,
p= 0.03). However, the difference in median IQ between clusters
was small (106, 101, 106) (Supplementary Fig. 4).

Replication cohort—canonical variates
All three identified CVs in the replication dataset were significant
(CV 1, p= 3.00 × 10−4; CV 2, p= 1.00 × 10−4; CV 3, p < 10-4) (Fig. 2,
Supplementary Fig. 5). CV 1 was characterized by a stable
coefficient for CBCL Obsessive-Compulsive subscore, CV 2 was
characterized by stable coefficients of opposite sign for SCQ total
score and CBCL Attentional problems Subscore (SCQ total score
bore the larger absolute coefficient), and CV 3 was characterized by
stable coefficients of opposite sign for CBCL Obsessive-Compulsive
subscore and CBCL Attentional Problems subscore, with the

Obsessive-Compulsive subscore having the larger absolute coeffi-
cient (Supplementary Table 4). Stable FC features across all CVs
were generally comprised of visual, attentional, limbic, control, and
somatomotor network cerebellar regions and control, default
mode, attentional, and somatomotor network cerebral regions.

Canonical variate replication analysis
The Social-versus-Attention CV from the original (i.e., POND)
cohort replicated to the greatest extent in the replication (i.e.,
HBN) cohort, followed by the Obsessive-Compulsive CV. The
Attention Deficit CV did not replicate (Fig. 5). The Social-versus-
Attention CV (POND CV 3) correlated most strongly with HBN CV 2
with respect to their vectors of behaviour coefficients (r=−0.99,
t(df) = 7.02 (1), p= 0.03 for a two-tailed test), and their vectors of
stable FC coefficients (r=−0.78, t(df) = −2.45 (4), p= 0.07).
Although the Attention Deficit CV (POND CV 1) strongly correlated
with HBN CV 3 in terms of behaviour coefficients (r=−0.98,

Fig. 4 Clustering POND cohort subjects according to functional connectivity. A Subject cluster assignment following spectral clustering on
functional connectivity canonical variate loading values. Only canonical variates 1 and 2 were used since canonical variate 3 did reach
statistical significance on permutation testing. B Proportion of subjects per diagnostic category per cluster.

Fig. 3 Canonical correlation analysis on POND data with Short Sensory Profile score added. A Standardized canonical coefficients for
behaviour scores measured from the original (i.e., POND) cohort. Short Sensory Profile total score was added to the set of analysed behaviour
scores. Errors bars indicate the standard deviation of canonical coefficients recalculated over 10,000 bootstrap resamples. * denotes |z| > 1.96,
where z is the ratio of a coefficient to its standard error. If |z| > 1.96, the coefficient is considered to be stable. B Canonical coefficients for
functional connectivity features after including SSP total score. * denotes stable coefficients. CBCL Child Behaviour Checklist, SCQ Social
Communication Questionnaire, TOCS Toronto Obsessive-Compulsive Scale, DAN dorsal attention network, VAN ventral attention network,
DMN default mode network, Sal salience network.
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t(df) = 4.92 (1), p= 0.04), the correlation between FC coefficients
was weak (r= 0.13, t(df) = 0.32 (6), p= 0.76). Shared FC features
observed in both original and replication cohorts most often
included the cerebellar attentional and control network regions,
and the cerebral default mode, control and ventral attention
network regions (Supplementary Table 5). To a lesser extent,
shared FC features also included the somatomotor and visual
network regions. Note that the negative sign of correlations
between POND and HBN coefficient vectors is a product of feature
space rotation due to the canonical correlation analysis process
[61] rather than a true anticorrelation between the two sets of
results. The general relationship between the signs of the
behaviour and FC coefficients for each canonical coefficient was
preserved. For example, most stable FC coefficients in POND CV 3
were of the same sign as the SCQ total score coefficient; this was
similarly true for HBN CV 2, which was highly correlated to POND
CV 3.

Clustering—replication cohort
Applying spectral clustering with a three-cluster solution on the
subject loading values from the significant FC CVs (all three CVs in
the case of the replication cohort) resulted in clusters that were
well-mixed across diagnostic categories, as observed in the POND
cohort (Supplementary Fig. 6). Chi-squared testing revealed no
significant difference in the relative frequency of participants per
diagnostic category per cluster compared to the frequencies
across the whole sample. ANOVA testing showed no significant
difference in age, IQ, or in-scanner motion between subjects
across the three clusters (Supplementary Table 3).

DISCUSSION
In two independent subject cohorts from different institutional
networks, behaviour-correlated components of cerebellar-cerebral
FC were identified across NDD children, characterizing patterns of
co-activity between the cerebellum and its main downstream
target for non-motor behaviour regulation, the cerebrum. Strikingly,

two of three identified components replicated when analysis was
repeated in the replication dataset. The components observed in
both the original and replication cohort were a social communica-
tion difference-versus attention deficit component and an
obsessive-compulsive component. The former component, despite
being non-significant in the original cohort, constituted a stronger
replication as evidenced by the similar behaviour coefficient sizes
and the high correlation to stable FC feature coefficients to
component from the replication dataset. FC features shared among
the CVs measured in both cohorts mainly included the cerebellar
attentional and control network regions and the cerebral default
mode, control, and ventral attention network regions.
To our knowledge, no other study has investigated cerebellar-

cerebral FC differences across multiple NDDs. To make sense of
the findings with respect to the literature, we therefore compared
to diagnosis-specific investigations most relevant to the maximally
correlated behaviours of each CV. For the Attention Deficit and
Obsessive-Compulsive CVs measured in the POND cohort (CVs 1
and 2), stable FC mainly included the attentional and control
network regions of the cerebellum and the dorsal attention,
default mode and control network regions of the cerebrum.
Atypical connectivity involving all listed cerebral regions have
been observed in ADHD relative to TD [71–74]. Attentional
network abnormalities are a common finding in individuals with
ADHD [75–77], as it was in the Attention Deficit CV (POND CV 1),
and disruptions are believed to influence activity in other
networks, especially the default mode network [71]. With respect
to OCD FC, deficits in switching between task-positive and default
mode network activation in the cerebrum during cognitive tasks
are considered to be a hallmark [78, 79] (disruptions to these
networks have also been observed in resting-state FC [80, 81]). The
contribution of the attentional, control, and default mode
networks to the stable features of the FC CVs evokes the triple
network model of control network-mediated switching between
salient and non-salient states [82, 83], which motivates further
investigation into cerebellum-mediated triple network activity
among children with NDDs.

Fig. 5 Results of canonical variate replication analysis. A Pearson’s correlation between behaviour score canonical variates measured in the
POND and HBN cohorts. B Pearson’s correlation between common stable features for each CV pair.
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The presence of a CV with stable social communication deficit
and attention deficit features (i.e., the Social-versus-Attention CV
or POND CV 3)—as opposed to a solely defined social commu-
nication deficit CV—may be due to a couple factors. Of the
behaviour scores investigated, SCQ total score and CBCL
Attentional Problems subscore were the two most strongly
correlated (r= 0.42 over all POND participants, compared to
r= 0.17 for CBCL Attentional Problems subscore and TOCS total
score and r= 0.25 for SCQ total score and TOCS total score). This
was not surprising as attention deficits are common among
children with ASD [21, 22]. Secondly, the greater prevalence of
stable somatomotor and visual network features in the Social-
versus-Attention CV compared to the Attention Deficit CV may
reflect the theorized causal relationship between early-life sensory
behaviour disruptions and the later manifestation of social
communication and attention deficits. This is referred to as the
developmental cascade hypothesis [84, 85].
Given the major role the cerebellum plays in sensory feedback-

informed coordination, this relationship between these beha-
viours was expected to correlate with cerebellar-cerebral FC
disruption. This was highlighted in the supplemental analysis
involving Short Sensory Profile behaviour scores in POND
participants, which demonstrated greater somatomotor network
involvement in CVs characterized by sensory-related behaviour
deficits (Fig. 3). This analysis also reflected previous studies such as
Khan et al. which also showed greater connectivity between
sensory and motor networks and non-motor networks in ASD [86].
Further investigation is warranted to probe the relationship
between cerebellar-cerebral FC and autism-related behaviours in
the context of specific sensory-related behaviour deficits, rather
than the composite score used here comprised of multiple
subscales. Longitudinal studies would also be greatly beneficial to
directly investigate the causality implicated by the developmental
cascade hypothesis. Such future studies could also help explain or
refute why attention deficit severity was anti-correlated with social
communication deficit severity in the Social Communication-
versus-Attention Deficit CV.
While the Social-versus-Attention-CV possessed features reflec-

tive of FC disruptions in ASD and while it replicated in the
replication cohort dataset, it was non-significant for the original
cohort. Given that the CV was significant in the replication cohort
(p= 1 × 10−4), this may be attributable to the smaller sample size
of the original cohort compared to the replication cohort.
Differences in behaviour score distributions between the cohorts
may have also been a factor, as POND SCQ Total Scores possessed
a right-tailed skew in their distribution due to few subjects with
severe social communication deficits.
No diagnosis-specific or diagnosis-enriched subgroup was

observed after clustering subjects based on cerebellar-cerebral
FC. In both the original and replication cohort, clustered subjects
were mixed across diagnoses, with no significant difference in age
or in-scanner motion (a significant difference in IQ was measured
between clusters in the original cohort, but the median IQ range
spanned only 5 points). Such an overlap in behaviour phenotype
and brain endophenotype across diagnoses has been repeatedly
observed [21, 23, 87]. This supports the case for future
investigations of NDD cerebellar-cerebral FC to not be restricted
to single diagnoses such as ASD but rather consider behaviour
and cerebellar function as a continuum that changes along the
NDD spectrum. These findings also suggest that cerebellar
atypicalities present in children with NDDs are driven by general
neurodevelopment differences rather than biological mechanisms
specific to any one NDD diagnosis.
It is clear from Table 1 that notable differences exist between

the original POND cohort and the replication HBN cohort. The
proportion of subjects from each diagnostic category across were
notably different (the HBN cohort comprised of proportionately
many more ADHD subjects and many fewer OCD subjects

(Table 1)). SCQ total score distributions were also dissimilar
between cohorts, with the POND cohort possessing proportionally
more participants with higher scores (CBCL Attention subscore, on
the other hand, was not significantly different). These observations
may be attributed to differences in cohort demographics, such as
the younger mean age and lesser proportion of males in the HBN
versus the POND cohort (Table 1). More importantly, POND and
HBN significantly differed in their participant recruitment strate-
gies: POND recruited NDD children through hospital sites and
required a primary diagnosis of an NDD, whereas HBN recruited
children with through community advertisements by targeting
caregivers who suspect that their child meets criteria for an NDD
diagnosis. Caregivers of HBN participants were incentivized by
providing them with comprehensive diagnostic evaluations,
clinical impressions and actionable treatment recommendations
which could subsequently be used to acquire an Individual
Education Programme for their child. In addition, unlike for POND,
HBN exclusion criteria contained an exclusion for children with
moderate to severe cognitive impairment (IQ < 66) [39]. Despite
these differences, we observed replication of two components,
suggesting that common patterns of cerebellar-cerebral FC exist
across the heterogeneous NDD population. This study addresses
the need for more validation of findings in independent cohort in
brain-behaviour investigations [88–90]; this is facilitated by
increasing efforts to make consortia data publicly available.
Finally, the Yeo and Buckner et al. parcellations employed here

—although widely used and in agreement with functional
parcellations derived by alternative methods such as by Guell
et al. [91]—represent but one possible functional parcellation of
the cerebellum and cerebrum [92–94]. The Yeo and Buckner
parcellation with the greatest number of regions (17) was used for
the cerebrum and was initially intended to be used for the
cerebellum as well. However, the 7-region version was used
instead due to inconsistent registration of the 17-region version to
the cerebellum across all scans. The number of regions is inversely
related to region size, which affects the calculated average BOLD
signals (larger regions generally exhibited more heterogenous
BOLD signal).

CONCLUSION
Cerebellar functional connectivity in children with neurodevelop-
mental conditions was observed to span two behaviour-correlated
components. These components correlated, respectively, to the
severity of obsessive-compulsive behaviours and social commu-
nication differences contrasted against attention deficit. The most
heavily weighted, stable, and replicable features of cerebellar
functional connectivity were between cerebellar attentional and
control network regions and cerebral attentional, default mode
and control network regions. No clear distinction in cerebellar
functional connectivity by diagnostic category was observed,
suggesting that cerebellar network atypicalities need to be
understood transdiagnostically.

DATA AVAILABILITY
Demographic, medical history data, behavioural and cognitive assessments for
children and youth recruited by the Province of Ontario Neurodevelopmental
Disorders Network is available at https://www.braincode.ca/content/controlled-data-
releases#pond. Imaging and phenotypic data collected by the Healthy Brain Network
is available at http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
index.html.
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