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The question of whether immune dysfunction contributes to risk of psychiatric disorders has long been a subject of interest. To
assert this hypothesis a plethora of correlative evidence has been accumulated from the past decades; however, a variety of
technical and practical obstacles impeded on a cause-effect interpretation of these data. With the advent of large-scale omics
technology and advanced statistical models, particularly Mendelian randomization, new studies testing this old hypothesis are
accruing. Here we synthesize these new findings from genomics and genetic causal inference studies on the role of immune
dysfunction in major psychiatric disorders and reconcile these new data with pre-omics findings. By reconciling these evidences, we
aim to identify key gaps and propose directions for future studies in the field.
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INTRODUCTION
Psychiatric disorders have surpassed physical disorders to become
the leading causes of disability worldwide [1] but, still, our
understanding of their underlying pathophysiology remains
incomplete. One of the contemporary hypotheses is the “two-
hits” or “multi-hits” model—in the context of genetic predisposi-
tions to these psychiatric disorders (the first hit; e.g., schizo-
phrenia, SCZ), the accumulating effects of a second or more
adverse exposures (the second hit) may lead to the diagnoses
[2–4]. Perturbations to the immune system by these adverse
exposures, such as infection [5–8] and stress [9–12], are an integral
part of this hypothesis [2–4].
The immune system is the key machinery in protecting the

body from exogenous and endogenous threats [13]. It, generally,
comprises two interconnected arms, the innate and adaptive arm.
The innate immunity is the first line of defense when the body
faces threats: it responds swiftly and intensely but not specific to
antigens. On the contrary, the adaptive arm responds by the
coordination of a range of T cells and B cells that are targeted to
the specific antigens in an elegant way, but may require days to
fully take in action. Proper functioning of the immune system
requires responses from both arms in concert, involving harmo-
nized expression of a large network of molecules, e.g., the
signaling molecules—cytokines, within a proper context [14]. In
addition, the immune system is dynamic, and both its composi-
tion and responses change with development and aging [15].
Unfortunately, this complex nature of the immune system is
predisposed to dysregulations which underlie many human
diseases [16–19].
The relationship between immune dysfunction and psychiatric

disorders have been extensively explored in the literature.
Findings from epidemiological or clinical studies have recently
been synthesized in several excellent meta-analyses and reviews
[20–28]. Thus, we will not review them in depth here; instead, we

will, after briefly summarizing the key findings from these studies,
focus on recent evidence reported from large-scale genomic
studies. Specifically, we highlight the use of Mendelian randomi-
zation (MR) [29] for causal inference in psychiatric disorders, which
have not been thoroughly reviewed yet. Due to the requirement
of large-scale data, MR studies to date have been performed on
data shared by few consortia, and resulted in a significant data
overlap, making it difficult to conduct a comprehensive meta-
analysis. We will employ a narrative approach to summarize these
findings and discuss their implications for future research.

Epidemiological and clinical findings
The initial evidence for the involvement of immune dysfunction in
psychiatric disorders came from studies examining the relation-
ships between infections and psychiatric diagnosis [5, 7, 8, 30–33].
Maternal infections or exposures to pathogens have long been
suggested as risk factors to psychiatric illness in offspring, for
example, attention-deficit/hyperactivity disorders (ADHD) [34],
autism spectrum disorder (ASD) [35], schizophrenia (SCZ) [5] and
others [6, 33]. Postnatal early life infections have also been
extensively reported to associate with later diagnosis of SCZ
[5, 36], bipolar disorder (BIP) [31] and ASD [35]. As infection events
preceded disorder diagnoses, these findings seemingly dictate
potential causal relations. But their limitations are also apparent.
Among these studies, there was considerable variability in
pathogen types, i.e., from virus (e.g., cytomegalovirus), bacterium
to parasite (e.g., toxoplasma gondii), in the infected body systems
(e.g., respiratory, gastrointestinal), in the time of infection (the
trimester or age of infected) and in severity of the infections
examined. Therefore, these findings have not yet reached a
consensus on the kind of infections that causes mental health
problems later in life. In addition, other forms of confounding have
not been carefully considered or controlled for. For example, a
recent study has argued that the association of maternal
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infections during pregnancy with ADHD in offspring could be fully
explained by the unmeasured familial confounding when apply-
ing a sibling comparison design [37]; another large-scale
epidemiological study has reported that the diagnosis of SCZ
was associated with increased risk of infection later in life,
suggesting a causation in the opposite direction [38].
Chronic inflammation, as indexed by inflammatory marker

levels, has been extensively studied as a potential risk factor to
psychiatric disorders. Individuals diagnosed with these disorders
frequently also develop immune and inflammation related
conditions [39–41]. For instance, SCZ patients were reported
having a 45% higher risk for developing autoimmune disorders
compared to the general population. In addition, it has been
shown that in most psychiatric patients the pro-inflammatory
cytokine levels (e.g., interleukin 6 (IL6), IL1b, C-reactive protein
(CRP)) were higher than in healthy controls [22, 23]. Prospective
studies had indicated that elevated baseline levels of pro-
inflammatory markers were predictive of psychiatric diagnoses
many years later [20, 42–44]. In clinical settings, levels of these
markers were also shown to decrease after treatment in patients
[45]. There is evidence for efficacy of some agents with anti-
inflammatory properties on first episode psychosis and schizo-
phrenia [46], and reports of anti-inflammatory effects of anti-
psychotic drugs are suggesting that their effectiveness is partially
due to a modulating effect on the immune system [47]. Patients
who respond to antidepressants have lower neuroinflammatory
markers compared to non-respondents [48]. Selective and
nonselective cytokine inhibitors like non-steroidal anti-inflamma-
tory drugs were effective in improving depression in meta-analysis
despite significant heterogeneity of individual studies [49]. A
scoping review of anti-inflammatory medications for the treat-
ment of mental disorders suggested different underlying mechan-
isms for their treatment success in BIP/MDD and SCZ [50].
Despite being promising, epidemiological findings are correla-

tional in nature. The observed immune-psychiatric relationships
can be interpreted in multiple non-exclusive ways: (1) Immune
dysfunction leads to an increased risk of psychiatric disorders; (2)
Immune dysfunction is the consequence of psychiatric disorders
or medication for chronic illness; or, (3) unknown/unmeasured
variables cause both—confounding effects. While prospective
studies seemingly meet the Temporality criterion in Hill’s causal
criteria [51], inflammatory markers were typically measured at
baseline, thereby not fully capturing chronic immune process in a
timely manner. Further, developing psychiatric disorders may take
years, thus, even the compliance with this temporality assumption
may be questioned.

Genomic association studies’ findings
In the last decade, genome-wide association studies (GWAS) have
become a popular design in interrogating genetic associations
with psychiatric disorders. In this design, millions of genetic
variants are tested for association with a disorder without
predefined biological hypotheses. Because germline variants are
stable after conception, associations identified by this design are
unaffected by reverse causation, a major problem in epidemio-
logical studies. In the last 15 years, the psychiatric genomic
consortium (PGC) has analyzed data from tens of thousands
patients and healthy controls identifying a large number of
genetic associations [52–56], for example, 287 loci for SCZ, 64 for
BIP, 27 ADHD and more than 44 for major depression disorders
(MDD), many of which were previously unknown. Within these
identified loci, immune-related genes have been annotated
(Fig. 1): for example, one of the first annotated immune gene is
the HLA region gene for SCZ [57, 58].
Leveraging massive summary statistics from large-scale GWAS,

polygenic genetic overlaps between immune-related and psy-
chiatric disorders have been examined by genetic correlation
estimates (gr) which quantifies the degrees of genetic sharing

between traits. Significant positive genetic correlations between
SCZ and Crohn’s disease (CD; gr= 0.097), inflammatory bowel
disease (IBD; gr= 0.117), ulcerative colitis (UC; gr= 0.106), primary
biliary cirrhosis (PBC; gr= 0.131) and psoriasis (PSO; gr= 0.182)
have been reported [59–61]. Among these immune-related
disorders, CD (gr= 0.22), UC (gr= 0.23), PSO (gr= 0.29), along
with Celiac disease (gr= 0.34) were genetically correlated with
BIP; rheumatoid arthritis (RA; gr= 0.16), type 1 diabetes (gr=
−0.14), PSO (gr= 0.23) were genetically correlated with ADHD
[61]. Moreover, in a recent study based on the UK Biobank (UKBB)
data, CRP was shown genetically correlated with MDD (gr= 0.154),
ADHD (gr= 0.326), obsessive-compulsive disorder (gr=−0.201),
anorexia nervosa (gr=−0.268), post-traumatic stress disorder
(gr= 0.238) and a trend (i.e., p > 0,05) was observed with SCZ
(gr=−0.058) [62]. Another study reported genetic correlation of
smaller magnitude (gr= 0.098) using summary GWAS from PGC
(MDD) and CHARGE consortium (CRP) [63].
To assess the immune-psychiatry relations at gene level, we

extracted genes reported by the most recent PGC studies for the
five disorders (SCZ, BIP, MDD, ADHD and ASD) with largest
sample size so far. We compared these genes with those
included in two curated immune databases: (1) the InnateDB [64]
which includes genes involved in the innate immunity arm and
(2) the ImmPort [65] which collects genes involved in general
immune functioning (Fig. 1A). As anticipated, all the five
disorders exhibit numerous genes associated with immune
functioning. The WordClouds generated from the genes asso-
ciated with these disorders and in the two immune databases
highlight that both the innate and the adaptive immune arms
were involved in risk of psychiatric disorders (Fig. 2B, C) and that
several immune genes are associated with more than one
disorder.
Gene expressions vary in human tissues and are partially

regulated by DNA methylations. We curated genes implicated by
DNA methylation association studies (epigenome wide association
studies (EWAS)) performed on blood samples from the EWAS
Catalog and genes differentially expressed in brain tissues from
psychiatric disorders and healthy controls reported by Gandal et
al. [66]. We aligned these genes with those from the two immune
gene databases noted above (Figs. 2 and 3). Similar to the
observations from GWAS data, both the innate and adaptive
immune systems were indicated (Figs. 2B, C and 3B, C). Together,
83 genes implicated in associations with SCZ were identified in
the three types of studies; 16 genes for BIP by the two available
studies, and two for ADHD (FOXP1 and ST3GAL3). WordCloud plots
created from these overlapping genes demonstrated that two
immune genes, OSBPL3 and TRIM27, were associated with both
SCZ and BIP (Fig. 2D, E).
In sum, results from large-scale hypothesis-free genetic studies

support the involvement of immune dysfunction in psychiatric
disorders. The slightly divergent overlapping patterns among the
three types of data sources may be due to differences in study
sample sizes, biological nature of DNA variation, methylation and
expression, where the latter two vary in age [67] and tissues. It is of
note that measuring DNA methylation or gene expressions after
diagnosis may represent a consequence of the disorders instead
of a cause, and thus cause-effect interpretations for such studies
need additional evidence. Another key observation is that, for the
three types of studies, the number of genes involved in the overall
immune system is not statistically enriched in psychiatric
disorders: Assuming 20,000 genes in the genome [68] while there
are 1376 and 1509 genes included in the two databases, on
average 6–8% of identified psychiatric genes should be involved
in the immune system at random; with this threshold, barely any
psychiatric disorder would show statistically significant enrich-
ment signal; but, this does not rule out that certain sub-immune
response pathways, for example the NF-kb system [66] may be
enriched.
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Mendelian randomization findings
Mendelian randomization (MR) analysis has been designed aiming
to interrogate the cause-effect relations between exposures (here,
immune functioning) and outcomes (here, psychiatric disorders)
[29, 69]. In MR, genetic variants (e.g., SNPs) are used as proxies to
the exposure of interest in a way to examine the causal effect of
the exposures on outcomes. As per the Mendelian inheritance
laws, genetic variations are randomly inherited from one
generation to the next. MR design, under certain conditions such
as random mating, can be regarded as a natural randomized trial.
In addition, as germline genetic variants are stable, they are less
likely affected by environmental factors during lifetime. Therefore,
MR estimates are unbiased by reverse causation and confounders
for exposures and outcomes (Box 1), in distinction to traditional
observational studies. MR analysis can be performed either using
the individual-level data (one-sample MR) or summary statistics
from GWAS of two independent samples (two-sample MR), one for
exposure and the other for outcome; with certain assumptions,
the underlying models for these two designs are equivalent.
As publicly sharing of GWAS summary statistics is becoming

the norm in the field, MR turns into the most cost-effective causal
inference model for examining the relations between the

immune dysfunction and psychiatric disorders. As such, the
choices of exposures and outcomes in MR are intrinsically
constrained by the data that is currently available. We have
searched PubMed database for MR studies published in the past
10 years focusing on immune function and major psychiatric
disorders (Box 2 and Table 1). In total, we have found 15 studies
that investigated the relationships between inflammatory mar-
kers and psychiatric disorders (up to nine different diagnoses).
Among these 15 studies, 13 used GWAS results from PGC, and for
exposures, only a few common GWAS results were used (Table 1).
Among the studied inflammatory markers, CRP and the IL6

signaling components (IL6, sIL6R, sgp130) are the most studied
exposures; other markers have only been examined by few
studies. While the statistical models of MR and the strategies for
selecting instrumental SNPs varied, CRP was consistently shown to
have a protective effect on SCZ. This consistency held even when
the CRP GWAS sample size increased from ~80,000 [70] to 200,000
[71] and in an analysis from an independent study [72], and when
the size of GWAS for SCZ increased from about 80,000 [73] to
320,000 [52]. The only null finding was from a Danish population
cohort with about 78,000 individuals using a one-sample MR
design [74]. The protective effect of CRP was also demonstrated
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Fig. 1 Psychiatric disorder associated genes identified by GWAS in relation to immune systems. A Genes reported by the psychiatric
genomic consortium for attention-deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BIP), major
depression disorder or depression (MDD) and schizophrenia (SCZ) are annotated to genes involved in innate immune response (InnateDB,
https://www.innatedb.com/) and ImmPort (https://www.immport.org/). Proportions of reported genes annotated to each immune gene
source are shown on y axis. The number of annotated genes and reported genes are shown on the top of each bar. WordCloud plots for
reported genes annotated to ImmPort (C) and InnateDB (B). Text font sizes indicate the number of disorders associated with the gene.
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for ASD [62] and sub-symptoms of depression [44, 75] but not to
major depression disorder (MDD). Another relatively consistent
finding is the detrimental effects of increased IL6 signaling to SCZ,
MDD, depressive sub-symptoms and depression [44, 75–78].
Significant causal effects for other markers (sIL2Ra and FGFBasic)
to psychiatric disorders have been reported by only a single study

[79, 80]. In general, there was no causal effects of psychiatric
disorders on inflammatory marker levels reported, except by Chen
et al. [79] (Table 1). In summary, while sample overlapped, the
extremely large sample sizes of the underlying GWAS studies lend
some credibility to these causal findings, particularly for CRP and
IL6 signaling which have been reported in multiple studies.

Fig. 2 Psychiatric disorder associated genes identified by differential expression in brain tissue, GWAS, EWAS in relation to immune
systems. A Genes identified by differential expression in brain tissue by Gandal et al. [66] for autism spectrum disorder (ASD), bipolar disorder
(BIP), and schizophrenia (SCZ) are annotated to genes involved in innate immune response (InnateDB, https://www.innatedb.com/) and
ImmPort (https://www.immport.org/). Proportions of reported genes annotated to each immune gene source are shown on y axis. The
number of annotated genes and reported genes are shown on the top of each bar. WordCloud plots for reported genes annotated to ImmPort
(C) and InnateDB (B). Wordcloud plots for reported genes identified by brain tissue expression, GWAS and EWAS annotated to ImmPort (D)
and InnateDB (E). Text font sizes indicate the number of disorders associated with the gene.
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Owing to ever increasing samples for GWAS studies, well-
powered MR studies are keeping up, discovering novel causal
effects of inflammatory markers on psychiatric disorders. However,
major challenges remain. Because associations identified by GWAS
are typically located in non-coding regions, carefully selecting
valid instrumental SNPs is imperative. In the context of studying
inflammatory markers as exposures, two popular selection
strategies have been used (Table 1): either selecting independent
genome-wide significant SNPs (p < 5 × 10−8) disregarding geno-
mic locations (GW-SNPs), or, among these SNPs, selecting only
those that are located to the corresponding coding genes (cis-
SNPs). Although the latter seems better in avoiding pleiotropic
instruments, these selected cis-SNPs may still be in linkage
disequilibrium with SNPs nearby but outside of the coding
regions. Another challenge is the highly pleiotropic nature of
inflammatory markers, e.g., CRP and IL6 [62]. This phenomenon
very likely generates the so-called correlated horizontal pleiotropy
which can bias MR estimates (Box 1). To date, most of published
studies have not specifically handled this bias [81].

DISCUSSION AND PERSPECTIVES
We briefly reviewed the evidence of immune dysfunction
influence on psychiatric disorders from epidemiological or clinical

studies. We added to the growing body of evidence provided by
recent genomic and epigenomic findings. We showed that
evidence from the fifteen Mendelian randomization studies, which
directly tested for causal effects of inflammatory markers on
psychiatric disorders, supports a causal interpretation. However,
are we able to claim a causal relation between the two?
Synthesizing evidence from these studies leads to several

notable points. Epidemiological studies generally support the
notion that elevated inflammatory responses may potentially
cause psychiatric disorders. The low-level inflammation may
stem from either chronic infection history or other illness
indexed by sub-clinical but elevated inflammatory marker levels.
These data have been most often interpreted as the involvement
of the innate immunity arm. However, both genomic and
epigenomic studies implied the involvement of adaptive arm
as well, even to a large extent reported by a recent study [82]
(Figs. 1–3). This is not contradictory to findings from epidemio-
logical studies. The frequently studied inflammatory markers,
such as IL6, have well-known functions in modulating the
adaptive immune responses, immune cell differentiation, and
other cellular processes [83]. The generally small effect sizes in
epidemiological and genetic studies indicate that immune
dysfunction may be secondary in causing these diseases or it is
relevant only for a subset of patients.
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Fig. 3 Psychiatric disorder associated genes identified by EWAS in relation to immune systems. A Genes identified by epigenomic wide
association studies included in the EWAS Catalog (http://ewascatalog.org/; accessed at January 2023) for attention-deficiency/hyperactive disorder
(ADHD), autism spectrum disorder (ASD), depression or depressive symptoms (Dep) and schizophrenia (SCZ) are annotated to genes involved in
innate immune response (InnateDB, https://www.innatedb.com/) and ImmPort (https://www.immport.org/). Proportions of reported genes annotated
to each immune gene source are shown on y axis. The number of annotated genes and reported genes are shown on the top of each bar. Wordcloud
plots for reported genes annotated to ImmPort (C) and InnateDB (B). Text font sizes indicate the number of disorders associated with the gene.
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Most MR studies have investigated whether perturbations of
the IL-6 signaling pathway may lead to increased disease risk.
These findings support the epidemiological observations, i.e.,
increased activity of this pathway plays a causal role in these
disorders. But the consistently reported protective effect of CRP is
in a startling contrast to prior epidemiological and clinical
observations. CRP, an acute-phase protein, responds to acute
infections or inflammations by sharply increasing expression
levels, up to thousandfold within few hours [84]. But whether
common genetic variations identified by GWAS capture these
acute response or basal expression levels is uncertain [85–87].
Thus, interpreting elevated CRP levels (<10mg/l) as indicator of
chronic inflammation needs more support: chronic inflammation
can lead to elevated CRP levels, but elevated CRP levels may not
indicate ongoing chronic inflammation. Moreover, epidemiologi-
cal studies frequently reported the effects of immune dysfunction
within a narrower sampling time window; MR studies, or in
general genomic association studies, can only estimate the
lifetime average effects. Therefore, this important distinction
may lead to divergent conclusions.

The protective effect of CRP is biologically plausible. CRP exists
in two isoforms—soluble pentamer and insoluble monomer. In
face of infection/inflammation the pentameric form of CRP, mainly
produced in the liver, dissociates irreversibly into monomeric form
that acts locally and has a pro-inflammatory effect, i.e., by
activation of the classical pathway of the complement system
[88]. However, CRP-induced complement activation does not lead
to the C5-C9 activation, which amplifies pro-inflammatory
processes [88]. Thus, the pro-inflammatory effect of CRP is highly
regulated and potentially plays a beneficial role for health. In
addition, both in vitro and in vivo studies have shown that CRP
can opsonize endogenous and exogeneous antigens to facilitate
cellular clearance by other immune cells, thereby playing anti-
inflammatory and tissue repairing functions [88, 89].
In conclusion, while great progresses have been made in

investigating the causal effects of immune dysfunction in
psychiatric disorders, we still do not have the full picture. To
approach this goal, triangulation of findings from different fields is
critical [90]. Currently, most epidemiological or clinical studies
have measured inflammatory markers only at baseline in

Box 1. Mendelian randomization in cytokine to psychiatric studies

SNPs

Us

Psychmarkers
SNPs

Us

Psychmarkers SNPs

Us

Psychmarkers

A B C

Mendelian randomization (MR) analysis has become a cost-effective design to examine the potential causal effect of immune response to the risk of psychiatric disorders.
This design primarily uses recently accumulated large-scale genome-wide association studies (GWAS) data. Despite whether individual-level data (1-sample MR) or GWAS
summary statistics are used (2-sample MR), the ideal situation is illustrated in panel A. Here, it is assumed that the effect, β1, of the genotype (SNPs) on the inflammatory marker
(markers) is strong (in MR terminology, the Relevance assumption), that there is no relation from genotypes (SNPs) to unmeasured confounder variables (Us) (the Exchangeability
assumption), and that there is no direct path from the SNPs to the disorders (psych), i.e., the effect of SNPs on the disorders must be mediated by inflammatory markers. In case
these assumptions are met, MR analysis is able estimate unbiased causal effects between markers and psychiatric disorders (β2). Notably, in this ideal situation, in contrast to
non-MR models, the causal estimates are less likely being plagued by reverse causation (Psych to markers), nor biased by confounders between markers and psychiatric
disorders.
As sample size increases, constructing strong instrument for marker effects can, to a large extent, satisfy the no measurement error assumption (NOME), however, to avoid the

situation in depicted in panels B and C as difficult. In panel B, genetic instruments may potentially affect the risk of psychiatric disorders which are highly polygenic [124] with
effect α. This direct pathway (named horizontal pleiotropy), paralleling to those mediated by inflammatory markers, can bias causal effects estimates. In addition to the direct
horizontal pleiotropic pathway, the genetic instruments could potentially also affect unknown confounders (Us), which will allow for indirect horizontal pleiotropic pathway, i.e.,
from SNPs to Us and to psychiatric disorders, i.e., γν. Because these confounders by definition affect the level of inflammatory markers, in this situation it is obvious that the total
effect of SNPs (i.e., β1+ γη) on inflammatory markers will correlate with indirect horizontal pleiotropic effect of these SNPs (i.e., γν). This will further challenge to obtain unbiased
causal effect estimates.
Standard MR models such as inverse variance weighted model (IVW) [125], egger regression [126], weighted median/mode [127], MR-PRESSO [128], or MR Raps [129] can to

certain extent ameliorate the direct horizontal pleiotropic bias but sensibly handling the indirect horizontal pleiotropy is under intensive research recently.

Box 2. Methods

Data sources
Data collection was done in November, 2022: we searched PUBMED for articles written in English since January, 2000 that indicated use Mendelian Randomization (MR) study

design to study causal relationship between psychiatric disorders and inflammatory biomarkers using the following search terms: (depress* OR schizophrenia OR bipolar OR
autism OR attention OR post-traumatic OR anorexia OR psychiatric OR mental) and (inflammat* OR interleukin OR IL-1 OR IL-6 OR C-Reactive OR CRP OR cytokine) and
(Mendelian).
Study selection
Two authors (OI/YW) iteratively reviewed titles, then abstracts, before conducting a full-text review of potentially eligible studies. Studies were included if they satisfied all

three of the following requirements: [1] use of an MR design, [2] psychiatric disorder as exposure or outcome, and [3] immune system marker as exposure or outcome.
Data extraction
One author (OI) extracted the data and summarized them, while another author (YW) independently examined them. Each MR study’s exposure, outcome, GWAS source,

method for MR, instrument selection, findings, sample size, odds ratio (OR) and/or beta (95% CI) were extracted.
Quality assessment
Two reviewers (OI and YW) evaluated the quality of the chosen research; any disparities were discussed, and a third reviewer (EL) settled any differing opinions. The risk of

bias in MR studies cannot be assessed using a standardized tool. Therefore, to evaluate the quality of the included studies, we examined how studies approached the selection
of valid instruments for MR.
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longitudinal studies. As such this design cannot distinguish
random fluctuations from true chronic inflammation, which needs
multi-timepoints measures of many immune parameters [86, 87].
Although omics technology has brought about novel findings, we
are still lacking well-powered cell type specific data to link genetic
variations to cellular functions. Lastly, as of today, MR studies are
highly biased toward a few, sufficiently sized, datasets, and future
work should strive to replicate these findings with independent
data sources.
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