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Dietary fibers are generally thought to benefit intestinal health. Their impacts on the composition and metabolic function of the gut
microbiome, however, vary greatly across individuals. Previous research showed that each individual’s response to fibers depends
on their baseline gut microbiome, but the ecology driving microbiota remodeling during fiber intake remained unclear. Here, we
studied the long-term dynamics of the gut microbiome and short-chain fatty acids (SCFAs) in isogenic mice with distinct microbiota
baselines fed with the fermentable fiber inulin and resistant starch compared to the non-fermentable fiber cellulose. We found that
inulin produced a generally rapid response followed by gradual stabilization to new equilibria, and those dynamics were baseline-
dependent. We parameterized an ecology model from the time-series data, which revealed a group of bacteria whose growth
significantly increased in response to inulin and whose baseline abundance and interspecies competition explained the baseline
dependence of microbiome density and community composition dynamics. Fecal levels of SCFAs, such as propionate, were
associated with the abundance of inulin responders, yet inter-individual variation of gut microbiome impeded the prediction of
SCFAs by machine learning models. We showed that our methods and major findings were generalizable to dietary resistant starch.
Finally, we analyzed time-series data of synthetic and natural human gut microbiome in response to dietary fiber and validated the
inferred interspecies interactions in vitro. This study emphasizes the importance of ecological modeling to understand microbiome
responses to dietary changes and the need for personalized interventions.
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INTRODUCTION
Fermentable dietary fibers, such as inulin and resistant starch, are
edible carbohydrate polymers that escape digestion by host
enzymes in the upper gut and are fermented by gut microbiota in
the cecum and colon. The major products from the microbial
fermentative activity in the large intestine are short-chain fatty
acids (SCFAs)—mainly acetate, propionate, and butyrate—which
have broad impacts on intestinal health and immunity [1–3].
Impaired SCFAs production has been associated with multiple
diseases [4, 5]. Dietary fibers can selectively enrich beneficial gut
bacteria [6] and could be administered as “prebiotic” therapies to
restore intestinal gut microbiota and elevate SCFA levels [7, 8].
Previous work showed that dietary fibers can cause rapid

changes in microbiota composition and biomass [9, 10]. But the
ability of fibers to increase SCFA production varies across
individuals [11–14]. For example, Baxter et al. showed that
resistant starch was able to promote butyrate production in only
63% of participants [12]. While the individualized response can
arise from a combination of factors such as host genetics and diet
history, the baseline gut microbiota is also a critical factor [14, 15].

The feces of some healthy human donors fail to ferment resistant
starch, which can be restored by co-incubation with Ruminococcus
bromii, a well-known degrader of resistant starch [16]. Person-to-
person variation in the bacterial and metabolomic composition of
gut microbiome [17] can further impact biological variables such
as body mass index [18] and glucose tolerance [18, 19] of the
human host.
Dietary fibers select from the pool of baseline community for

microbial taxa that can use fibers as substrates for growth, and
these responders could further impact the entire gut microbial
community through a complex ecological network [20] (Fig. 1A).
The primary users of dietary fibers are relatively depleted in
individuals on a low-fiber diet, but they can rapidly expand and
dominate the gut microbiota after substantial induction [21].
Production of some SCFAs, especially butyrate, involves cross-
feeding cooperations among specialized gut bacteria. By hydro-
lyzing complex polysaccharide fibers, primary degraders release
into the gut partially breakdown products (e.g., mono- and
oligosaccharides) and fermentation metabolites (e.g., pyruvate),
which can respectively benefit the secondary fiber degraders and
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Fig. 1 Longitudinal profiling of murine gut microbiota and metabolites to study the baseline-dependent dynamics in response to dietary
fiber intervention. A An ecological perspective of baseline-dependent dynamical responses of gut microbiota and SCFAs. Administration of
dietary fibers alters the ecological substrate niche in the gut and selects for a unique ecological network for each baseline microbiota type.
Within the network, a few gut bacteria playing key metabolic roles as primary/secondary degraders and SCFAs fermenters drive
heterogeneous responses of bacteria and SCFAs via diverse ecological interactions (e.g., resource competition and cross-feeding).
B Experimental design. All mice from the four vendors were continuously fed with either dietary fiber (inulin or resistant starch)- or cellulose-
supplemented diets for four weeks. Gray dots indicate the days on which data were collected from fecal samples. C Baseline microbiota
composition shown in robust principal coordinate analysis (PCoA) biplot. Isogenic age- and gender-matched mice were purchased from four
different vendors (Beijing, Guangdong, Hunan, and Shanghai). Gray arrows represent the dominant bacterial taxa in these samples. Adonis
analysis was performed to test for differences in baseline gut microbiota composition across the four vendors (p < 0.001). D Top four panels:
presence (white blocks indicate absence) and abundance (colored blocks) of bacterial taxa in the baseline samples. Bottom panel: the
prevalence score of a taxon across mice (defined as the fraction of all mice that contain this taxon) or vendors (defined as the fraction of
vendors whose mice all contain this taxon).
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SCFAs producers [22, 23]. Despite increasing interests in micro-
biota ecology and targeted modulation [24–27], a system level,
quantitative understanding of the ecological dynamics of gut
microbiome under dietary interventions and the dependence on
the baseline community composition is still lacking.

In this study, we profile longitudinally the gut microbiota of
mice to study the ecological basis for the baseline-dependent
dynamical response to dietary fibers. We use the time-series data
to infer the ecological network that explains why the microbiota
fiber responses vary with their baseline composition. We find that
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the growth rates and ecological interactions of key bacteria with
known ability to benefit from fibers drive the major shifts in the
gut microbiota composition. We further show that their baseline
abundances predict individualized responses in bacterial density
and SCFA concentration. Finally, we analyze the ecological
response of synthetic and natural human gut microbiome to
dietary fiber from previously published time-series data and
validate the inferred interspecies interactions through in vitro
experiments. This study provides a framework to identify the
ecological drivers of microbiota response to dietary interventions,
which is critical for understanding the individualized responses of
gut microbiota and the design of targeted modulations.

RESULTS
Isogenic mice from different origins vary in their baseline gut
microbiota
We used age- and gender-matched isogenic mice that harbor
distinct baseline gut microbiota composition to study the
dynamical response to dietary interventions and the inter-
individual variation in ecological dynamics [28]. To ensure the
distinctness of their baseline gut microbiomes, mice were
purchased from four commercial vendors (labeled as Beijing,
Guangdong, Hunan, Shanghai, see “Methods”), i.e. independent
breeder sources. All mice were fed with cellulose-based diet
7 days prior to dietary fiber intervention. We monitored temporal
shifts in the absolute abundance (by quantitative PCR) and
community composition of gut bacteria (by 16S rRNA gene
amplicon sequencing and shotgun metagenomics sequencing),
SCFAs concentration (by targeted metabolomics), as well as
physiological changes following the intervention of fermentable
dietary fibers (inulin and resistant starch from maize) and cellulose
(control group) (Fig. 1B). The two dietary fibers used in this study,
inulin and resistant starch from maize, can be degraded by gut
bacteria in the cecum/colon [29, 30] and to stimulate the
production of SCFAs [8, 12].
Consistent with previous studies [31, 32], these mice grown in

vendor-specific housing and feeding conditions can be naturally
divided by vendor sources into groups with distinct microbiota
composition after 7 days of acclimatization. Principal coordinate
analysis based on the robust Aitchison distance [33] shows that
the baseline compositions of those mice can be naturally clustered
by vendors (Adonis, p < 0.001) and are characterized by distinct
bacterial taxa (Figs. 1C and S1A). For example, Shanghai mice have
low relative abundances of several commensal polysaccharide-
degrading bacteria such as Muribaculaceae and Rikenellaceae
[34, 35]. The profound inter-vendor differences are also noticeable
at the level of presence and absence of bacteria: ~65% of taxa
were entirely absent in at least one vendor and only ~10%
bacterial taxa were present in all mice (and thus all vendors)
(Fig. 1D). Consistent with previous findings [36], the prevalence
and abundance of bacterial taxa in these baseline samples exhibit
a strong positive linear relationship on a logarithmic scale (Fig.
S1B). Throughout the observation of our experiment, the body
weight of mice gradually increased over time, but the gain in body
weight is generally insignificant between the inulin treatment
group and the cellulose control group (Fig. S2A). Among the
different experimental groups, there was no obvious difference in
food intake and fecal weight (Fig. S2).

Baseline-dependent microbiota dynamics in response to
inulin
Inulin intervention rapidly promoted the absolute abundance of
gut bacteria on the time scale of days, except for Shanghai mice
(Fig. 2A). More interestingly, inulin induced a two-phase dynamical
response in the gut microbiota diversity (Fig. 2B), which dropped
rapidly in the short term and recovered gradually in the long term.
The initial loss of diversity is primarily due to the changes in
evenness (Fig. S3A), not richness (Fig. S3B), suggesting an
expansion of certain bacterial taxa. Indeed, we observed rapid
but non-monotonic changes in the relative abundances of several
dominant bacterial genera, such as Bacteroides and Muribacula-
ceae (Fig. 2C). Notably, the long-term recovery of microbiota
diversity is only partial for Beijing and Hunan mice (i.e. lower gut
microbiota diversity at day 31 compared to day 0). By
metagenomic sequencing, we observed temporal changes in
the functional capacity of gut microbiome. Specifically, the initial
(day 0), short-term (day 5), and long-term (day 31) microbiomes
have distinct gene family profiles (Fig. S4A), and the relative
abundance of genes encoding enzymes for inulin utilization
(inulinase/fructanase) significantly increased after intervention
(Fig. S4B). Collectively, our longitudinal profilings are consistent
with previous observations that dietary fibers have profound
impacts on the dynamics and function of gut microbiota [37, 38].
In addition, we found the tendency of gut microbiota to stabilize
under sustained stimulation of inulin (Fig. 2D). The microbiota
compositions at the end of inulin intervention (all mice sacrificed
on day 31) were clearly distinct from their baselines, indicating
new equilibria sustained by inulin intake.
The changes in the gut microbiota were accompanied by

changes in the levels of three major SCFAs (acetate, propionate,
and butyrate) and valerate (Figs. 2E and S5). Since SCFAs are
metabolites produced by colonic bacterial fermentation of inulin,
we expect similar phase-dependent dynamics of fecal SCFAs
concentration. Indeed, both total (acetate, propionate, butyrate,
iso-butyrate, valerate, iso-valerate) and the three major SCFAs
show two temporal phases: their levels peaked in short-term
before gradually decreasing until steady states, with an exception
of Shanghai mice whose propionate production was notably
delayed and compromised. The mean peak-to-baseline concen-
tration ratios of total SCFAs were 3.3, 3.9, 4.5, and 4.2 for Beijing,
Guangdong, Hunan, and Shanghai mice respectively. The long-
term decline in SCFAs was not a result of reduced diet intake, as
the intake rate remained unchanged over time (Fig. S2). Despite
reduced SCFAs in the second phase, the mean concentrations of
total SCFAs on day 31 were still 2.0-3.5-fold of their baseline levels.
We have shown above that Shanghai mice had a delayed

increase in bacterial absolute abundance (Fig. 2A) and produced
low levels of propionate (Fig. 2E) in response to inulin. The distinct
behavior of Shanghai mice indicated that the responses of
bacterial absolute abundance and SCFA production may depend
on the baseline microbiota. We developed a statistical analysis,
which we name “NMF-PERMANOVA”, to test whether a bacterial
species or metabolite responds to dietary fiber (“responsiveness”)
and whether the response depends on baseline microbiota
(“baseline dependence”) within the same framework (see “Meth-
ods”). Briefly, time-series data of both intervention and control
groups were projected onto a 2-dimensional space by sequential
non-negative matrix factorization (NMF) [39] to capture

Fig. 2 Inulin-induced temporal shifts in murine gut microbiome and short-chain fatty acids (SCFAs) metabolism. A Bacterial load. B Alpha
diversity of gut microbiota composition. C Relative abundance of bacterial genera shown in stacked band plot. Un.: unclassified. D Shifts in gut
microbiota composition represented by principal coordinate analysis (PCoA) plot. Initial and final states represent the microbiota
compositions at day 0 and day 31 respectively. E Fecal concentration of acetate, propionate, and butyrate. Beijing, Guangdong, Hunan,
Shanghai are four different mice vendors. Lines (A, B), dots (A, B, D), and stacked bands (C, E) represent the mean values over mouse replicates
from the same vendor (n= 4 for Hunan and Guangdong, n= 5 for Beijing and Shanghai). Shading areas (A, B) and error bars (D) represent
standard error of the mean.
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representative temporal trends (Fig. 3A, Fig. S6). With this coarse-
grained data representation, we then obtained two p values by
comparing the differential responses of the extracted features
between the intervention and control group (“responsiveness”, pr)
as well as those between the four vendors in the intervention
group (“baseline dependence”, pb) using Permutational Multi-
variate Analysis of Variance (PERMANOVA) test. The NMF-
PERMANOVA analysis confirmed that the dynamical responses of
bacterial load (Fig. 3B), propionate, and butyrate (Fig. 3C) were
nontrivial and baseline-dependent (both pr and pb < 0.05 after
multitest correction).

Primary degraders of inulin respond fast and drive community
dynamics
We used the generalized Lotka–Volterra (gLV) model to infer key
ecological drivers of the mouse gut microbiota in response to
dietary fiber intervention (Fig. 4A, see “Methods”). The gLV model
assumes that degradation and subsequent utilization of dietary
fibers boost bacterial growth rate (the amount of increment is
parameterized by ϵ). One long-standing challenge in gLV
inference is the overfitting of parameters when the time series
is too short and the number of samples at all timepoints is far less
than that of gLV parameters. To address the challenge, we
estimated the uncertainty associated with model parameters by
formulating the gLV-based inference in a Bayesian framework
which outputs posterior distributions of estimated parameters

[40], rather than point estimates in penalized regressions [41]. In
our gLV-based probabilistic framework, any bacteria taxa with a
significantly positive distribution of “fiber response” ϵ is predicted
as a “primary degrader” of inulin as gLV controls for inter-taxa
interactions during regression. We identified five such primary
degraders grouped at varying taxonomic levels, including
Muribaculaceae (family), Faecalibaculum (genus), Parasutterella
(genus), and Bacteroides (genus) and Bacteroides acidifaciens
(species) (Fig. 4B, see “Methods”). The inference of primary
degraders in the gLV-based framework was robust to the criteria
used for clustering 16S rRNA gene amplicons, either at the lowest
classified taxonomic level (Fig. 4B) or at the operational taxonomic
unit (OTU, 97% sequence similarity) level (Fig. S7). In addition, we
explored the use of linear mixed-effects (LMM) model to identify a
significant association between bacteria taxa and diet (see
“Methods”). We found that four of the five primary degraders
inferred by gLV were also identified by LMM (Table S1).
For four of the five putative inulin degraders (except

Parasutterella), we found genetic evidence and/or in vitro experi-
ments from literature to support their functional roles in inulin
degradation (Table S2). For example, members from Bacteroides
and Muribaculaceae contain PULs with a susC/susD homologous
gene pair that facilitates sensing and import of inulin [42, 43].
Putative inulin PULs were also detected in the metagenome-
assembled genomes of B. acidifaciens and Muribaculaceae (Table
S3). Furthermore, we analyzed the data from an independent

Fig. 3 Quantifying the statistical significance of baseline-dependent dynamical response. A A schematic diagram of our statistical
framework to test for the significance of baseline-dependent response. The framework involves three steps: (1) projecting all time-series from
both intervention and control groups onto the same 2-dimensional space, (2) normalizing all data points by recentering the mean of control
group to the origin, and (3) performing two separate statistical tests using the projected data to quantify the significance of “responsiveness”
(pr) and “baseline dependence” (pb) using Permutational Multivariate Analysis of Variance test. Abbreviations: Significant (Sig.); dependence
(dep.). For each baseline (Beijing, Guangdong, Hunan, Shanghai), an arrow was drawn from the eclipse center of the baseline under cellulose
intervention (standardized to the origin) to that under the inulin intervention. Reduced 2-dimensional representation of the inulin-induced
responses in bacterial load (B) and three major SCFAs (C). In all panels, each symbol represents a mouse (triangles: cellulose group, circles:
inulin group) and all mice data from the same vendor under the same intervention (inulin or cellulose) was used to fit an eclipse (ellipse’s
radius was determined by 2 standard deviations).
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study [44], which profiled the murine gut microbiota composition
after inulin intervention for two weeks. Analysis of this indepen-
dent experiment found similar dynamics in gut microbiota
diversity and composition (Fig. S8A, B). Although bacterial
absolute abundance was not available in this data set, we applied
the Bayesian version of gLV-based inference to the relative
abundance profiles and again identified B. acidifaciens as a
primary degrader of inulin (Fig. S8C).
Alternatively, we used the NMF-PERMANOVA analysis (Fig. 3A) to

identify all bacterial taxa that exhibited differential responses
between inulin and cellulose groups, regardless of whether the
responses are direct or indirect. We found a total of 37 bacterial
taxa with significant dynamical responses (Table S1), including the
five putative primary degraders as inferred by the gLV model
above. Among the remaining 32 taxa, Akkermancia muciniphila and
Bacteroides uniformis are the most abundant and their relative
abundances significantly increased after day 5 (Figs. S9 and S10).
Unlike gLV and LMM, NMF-PERMANOVA did not control for indirect
effects on bacterial growth via ecological interactions. It is
therefore likely that A. a muciniphila and B. uniformismay indirectly
benefit from the primary degraders (we call them “generic
responders”). Indeed, inference of the gLV model suggested that
the growth of A. muciniphila was facilitated by B. acidifaciens
(Fig. 4C). This is also consistent with previous observations that A.

muciniphila cannot grow on inulin but can be significantly
promoted by shorter chain fructo-oligosaccharides [45].
The notion of eco-group (or guild), i.e., a set of bacterial taxa

that perform similar functions, is very useful to understand
microbial ecology [26, 46]. We divided the entire gut microbiota
into three eco-groups: (1) 5 primary degraders of inulin; (2) 32
generic responders to inulin intervention; (3) non-responders. The
group-level dynamics showed that the primary degraders clearly
dominated the microbiota response (Fig. 4D). The short-term rise
in the absolute abundance of a few bacterial taxa corresponds to
the initial decline of the gut microbiota evenness soon after the
intervention (Fig. 2B). More interestingly, the baseline-dependent
responses can be causally linked to the initial composition of key
bacterial taxa (Fig. 4D, E). For example, the abundances of
Akkermansia municiphila and Bacteroides uniformis increased
dramatically in Hunan mice (Fig. S10), which contained the
highest abundance of these two species in the baseline (dark
yellow box frames in Fig. 4E). Similarly, the extremely low baseline
abundances of B. acidifaciens and Muribaculaceae in Shanghai
mice (violet box frames in Fig. 4E) may explain the sluggish
responses in bacterial absolute abundance and SCFA productions
(Figs. S5 and S10).
Our gLV-based inference suggested strong competition among

primary degraders, where Muribaculaceae inhibited the growth of

Fig. 4 Inulin responders shape the dynamical response of murine gut microbiota. A. Generalized Lotka–Volterra (gLV) model combined
with Bayesian statistics to infer inulin degraders and pairwise interactions. The gLV model summarizes the underlying ecology by three terms
that additively determine bacterial growth rates: the basal growth rates (α), the influences from other bacteria (β), and the impacts of dietary
fiber (ϵ). A primary degrader is determined when 95% credible interval of the posterior distribution of ϵ is positive. B Posterior distribution of ϵ
for five primary degraders (violet) and two generic responders (dark yellow). Generic responders are those bacteria showing statistical
significance of inulin-induced response (i.e., responders) but not inferred as primary degraders. Bacterial taxa are ranked according to their
posterior mean of ϵ. C Core ecological interaction network composed of six bacterial taxa shown in panel B (see all significant interactions in
Table S4). Point and blunt arrows represent positive and negative interactions respectively. The arrow thickness is proportional to the
posterior mean of the corresponding interaction coefficient. D Ecological group dynamics of primary inulin degraders, generic responders
(presented with two subgroups), and non-responders. E Mean absolute baseline abundance of the seven bacterial taxa shown in (B).
F Temporal changes in the absolute abundance of the top three inulin degraders. In D and F, lines, and dots represent the mean values across
mice from the same vendor (n= 4 for Hunan and Guangdong, n= 5 for Beijing and Shanghai). Shading areas represent the standard error of
the mean.
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B. acidifaciens and Facaelibaculum (Fig. 4C). Indeed, B. acidifaciens
and Facelibaculum showed transient dynamics with a quick rise
and drop in their absolute abundances, while the abundance of
Muribaculaceae increased steadily and remained high during the
entire period of observations (Figs. 4F and S10). Our results are
consistent with previous studies by Patnode et al. [47] that
identified competitive inhibition as the ecological mechanism for
consistent dominance of Bacteroides cellulosilyticus over Bacteroids
vulgatus, even though both species contain fiber-processing
polysaccharide utilization loci (PULs). Taken together, we demon-
strate that primary degraders and their competitions are key
drivers of the baseline-dependent ecological dynamics of micro-
biota response to dietary fibers.

Baseline-dependent SCFA production and its association with
gut microbiota composition
The dynamics of SCFAs during inulin intervention varied
substantially across different baselines (Fig. S5). Shanghai mice
produced the lowest level of propionate (Fig. S5); these mice also
showed the lowest response in bacterial load (Figs. 2A and 4D),
due to the very low abundance of some primary degraders and
generic responders of inulin in the baseline microbiota (Fig. 4E).
We hypothesized that these key taxa may directly contribute to
propionate production and found that the baseline abundances of
B. acidifaciens, Muribaculaceae, A. municiphila, and B. uniformis
were positively correlated with the propionate concentration
(Fig. 5A, left panel). Indeed, Muribaculaceae, A. municiphila, and B.

uniformis have been previously found to produce propionate
in vitro and/or in vivo (Table S2). As a result and consistent with a
previous study [48], there was a strong positive association
between bacterial load and propionate concentration (Fig. 5A,
right panel; p < 0.001), as the two are both baseline-dependent. In
contrast, the association between bacterial load and other SCFAs
was not significant (Fig. S11).
Given that the gut microbiota is strongly associated with the

fecal levels of fiber fermentation products, we asked whether we
could quantitatively predict SCFA concentrations from the
microbiota composition measured at the same time. We evaluated
the performance of machine learning models to predict the fecal
SCFA concentrations using the absolute abundance of bacterial
taxa as predictors. All mice in our experiments were split into
training data and test data using a different data-split approach
(Fig. 5B). The “interpolation” approach generated balanced
distribution of baseline microbiota composition between the
training and test data (Fig. S12A), by randomly selecting a single
mouse from each vendor as test data and using the other mice for
training. In contrast, the “extrapolation” approach produced a
highly unbalanced microbiota distribution between the training
and test data (Fig. S12B), by randomly selecting all mice from a
vendor as test data and using mice of the other vendors for
training. Although the Random Forest regression model fitted the
training data reasonably well (R2 ≥ 0.66 regardless of SCFAs and
data-split approaches), the predictions generalized poorly to the
test data: R2 of SCFAs ranged from 0.10 to 0.45 for “interpolation”

Fig. 5 Quantitative relationship between SCFAs and murine gut microbiota composition. A Correlation between bacterial load and
propionate concentration (right big panel). We proposed that the correlation is mediated by some inulin responders which causally and
simultaneously affect both observations. Eight small panels to the left: Spearman’s correlations of baseline abundance of four inulin
responders (B. aci: s_Bacteroides-acidifaciens, Mur: f_Muribaculaceae, B. uni: s_Bacteroides-uniformis, A. muc: s_Akkermansia-muciniphila)
with the mean bacterial load (top row) or propionate concentration (bottom row) averaged across the intervention period. Dashed line:
Lowess (Locally Weighted Scatterplot Smoothing) regression. Spearman correlation coefficient (ρ) and adjusted p value are indicated in each
plot. B Prediction of SCFAs concentrations from gut microbiota composition using machine learning models. Two data-split strategies for
testing model performance were designed: mice in the test sets were randomly selected on a one-per-vendor basis for “interpolation” and
exclusively selected from a single vendor for “extrapolation”. Data before intervention (i.e., day 0) was not included. C Performances of Random
Forest regression models on the training and test datasets.
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but dropped below 0 for “extrapolation” (Fig. 5C). We further
showed that the low predictability in extrapolation cannot be
substantially improved by using alternative predictors (Fig. S13A),
models (Fig. S13B), or adding weights to training samples (Fig.
S13C). Given the current sample size, we found that Random
Forest regression models based on gut microbiota composition
had low or no predictive power for fecal SCFA concentration, if the
gut microbiota of interest was significantly different from the
baselines covered in training data. This agrees with previous
studies in human findings [49] that the substantial inter-individual

variation of gut microbiome could impede the predictive power of
machine learning models.

Ecological response of murine gut microbiome to resistant
starch
To study whether our ecological framework can be generalized to
study the dynamical responses of gut microbiota to other dietary
fibers, we administered resistant starch from maize to mice from
the same four vendors following the same experimental
procedure (see “Methods”, Fig. 1B). Compared to inulin, resistant

Fig. 6 Resistant starch-induced dynamical response in murine gut microbiota. Dynamical responses of bacterial load (A), gut microbiota
composition (B), and SCFAs concentration (C) following the resistant starch intervention. D Dynamics of two putative resistant starch
degraders. ϵ represents the growth impact of resistant starch and its posterior distributions are shown for each degrader. CI credible interval.
E Ecological interactions between the two degraders (see all significant interactions in Table S4). The arrow thickness is proportional to the
posterior mean of the corresponding interaction coefficient. F Mean baseline abundances of the two degraders. G Ecological group dynamics
of primary degraders and generic responders of resistant starch as well as the non-responders. H Correlations among baseline abundance of
Muribaculaceae, bacterial load, and propionate concentration. For the two small panels on the left, the time-averaged bacterial load or
propionate concentration on the y-axis was calculated by dividing the area under the curve of the corresponding variables by the duration of
observation. Dashed lines: Lowess (Locally Weighted Scatterplot Smoothing) regression. I Prediction of SCFAs concentration from gut
microbiota composition using a Random Forest regression model. “Interpolation” and “extrapolation” are two strategies for splitting all data
into the training and test sets (the same as Fig. 5B). Lines (A, D, G) or height of stacked bands represent mean values across mice from the
same vendor (n=5 for all vendors). Shading areas (A, D, G) represent the standard error of the mean.
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starch stimulated milder changes in the bacterial load (Fig. 6A),
gut microbiota composition (Fig. 6B), and SCFAs production
(Fig. 6C). Under resistant starch intervention, different analyses
(gLV, LMM, and NMF-PERMANOVA) all identified Faecalibaculum
and Muribaculaceae as “primary degraders” (Fig. 6D, see Table S2
for evidence from literature) and NMF-PERMANOVA further
detected 25 additional bacterial taxa as “generic responders”
(Table S1). The dynamics of primary degraders were qualitatively
similar between inulin and resistant starch interventions (Fig. 6D):
Muribaculaceae increased rapidly and reached a plateau (except
for Shanghai mice), while Faecalibaculum declined sharply after
the initial burst. The gLV-based inference suggested that the
observed dynamics was driven by mutual inhibition between the
two primary degraders (Fig. 6E).
We found that bacterial load (Fig. S14A) and the three major

SCFAs (Fig. S14B) exhibited baseline-dependent dynamical
responses to resistant starch intervention. For example, the weak
response in bacterial load and SCFA production of Shanghai mice
(Fig. 6A) could be explained by the low abundance of
Muribaculaceae in the baseline community (Fig. 6F, highlighted
in a red box frame). In addition, there was substantial growth of
generic responders in Hunan mice (Fig. 6G), although the
dominant bacterial taxa in this eco-group were different from
the taxa identified in inulin intervention (Table S1).
Finally, we found that the baseline abundance of Muribacula-

ceae was separately correlated with bacterial absolute abundance
and propionate level (Fig. 6H, left panel), supporting the
hypothesis that Muribaculaceae may serve as both a primary
degrader and a propionate producer. As a result, there was a weak
but statistically significant positive association between bacterial
load and propionate concentration (Fig. 6H, right panel; p = 0.002).
Similar to our findings from the inulin intervention group, Random
Forest models based on gut microbiota composition had low or no
predictive power for SCFA concentration in the resistant starch
intervention group (Fig. 6I). Collectively, our major findings were
qualitatively consistent between inulin and resistant starch
interventions, suggesting that the dynamical responses of gut
microbiota to fiber-based perturbation follow universal ecological
principles.

Inference and validation of interspecies interactions in human
gut microbiome
To further evaluate the generalizability of the gLV-based
approach, we analyzed the ecological response of synthetic and
natural human gut microbiome to dietary fiber from previously
published time-series data, and validated the inferred interspecies
interactions through in vitro experiments.
To start with, we applied the gLV framework to the longitudinal

data from the study by Patnode et al. [47] and validated a

previously unidentified interspecies interaction. In their study, the
authors profiled the ecological dynamics of synthetic communities
of human gut bacteria strains in gnotobiotic mice under citrus
pectin intervention (Fig. 7A). Consistent with the findings in their
study, the gLV model successfully identified the inhibition of B.
vulgatus by B. cellulosilyticus (Table S5). In addition, based on the
longitudinal profiling of 14-strain (B. vulgatus−) and 15-strain (B.
vulgatus+) baseline communities (Fig. 7B), we inferred that B.
vulgatus is a strong competitor to Bacteroides finegoldii, which was
not noted in the original study. We performed pairwise co-culture
of these two species (see “Methods”), and found that the growth
of B. finegoldii was strongly inhibited in the presence of B. vulgatus
(Fig. 7C).
We then used the gLV framework to infer ecological drivers and

interactions in natural human gut microbiome, based on long-
itudinal profiling of a human cohort under dietary fiber interven-
tion from a previously published study by Baxter et al. [12]
(Fig. 8A). We identified Bifidobacterium adolescentis as a strong
inulin responder, which is consistent with the literature and
validated by our experiment in vitro (Fig. 8B). Furthermore, we
predicted a competitive interaction between B. adolescentis and
Bacteroides stercoris (Table S6). In pairwise co-culture experiments
of these two species, we observed that the growth of Bacteroides
stercoris was inhibited in the presence of B. adolescentis (Fig. 8C).
Finally, we added the strong competitor Bifidobacterium

adolescentis to different baseline communities lacking it and
evaluated the outcome (Fig. 8D). In the baseline communities,
which were derived from fecal samples of three healthy
volunteers, Bifidobacterium adolescentis was absent and Bacter-
oides stercoris was present. We used the MiPro model for in vitro
culture, which has been shown to maintain the compositional
profiles of individual gut microbiomes (see “Methods”) [50]. After
24 h of in vitro culture, we sequenced the communities and
evaluated the effect of adding B. adolescentis (Fig. 8E). With a
significant increase of B. adolescentis in the community, we found
that the growth of Bacteroides stercoris was inhibited in two of the
three baselines.
In summary, we have shown that the gLV model can be used as

a useful framework to infer ecological drivers and interactions in
complex gut microbial communities, leading to testable hypoth-
eses for experimental validation [24].

DISCUSSION
Our study characterizes the ecosystem response of murine gut
microbiota to fibers, and emphasizes that ecological interactions
play a key role in the personalized impact of dietary changes. gLV-
based ecological inference from gut microbiome time-series data
has yielded mechanistic insights into the stability of probiotic

Fig. 7 Inference and validation of ecological interactions in synthetic human gut microbiome under citrus pectin intervention. A The
study design of Patnode et al. [48]. In their study, synthetic communities of 14 human gut bacterial strains with and without B. vulgatus were
continuously monitored in gnotobiotic mice for 12 days. Citrus pectin was supplemented after day 2 in the treatment group. B Time-series
data of absolute abundance of B. vulgatus and B. finegoldii reported in the original study. Lines: mean; shading areas: standard error (n = 5–10
mice per group). C Growth of B. finegoldii and B. vulgatus in monoculture and co-culture experiments using media supplemented with citrus
pectin (1% w/v). In the co-culture experiment, strains were inoculated at a 1:1 initial ratio. The abundance of individual strains in co-cultures
was determined by qPCR.
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community under dietary perturbation [51], colonization resis-
tance of pathogenic Clostridioides difficile [52], and community
assembly dynamics within preterm infant gut [24]. By integrating
gLV model with Bayesian regression, we inferred a competitive
network of fiber degraders as key bacteria that mediate the
response of murine gut microbiota to inulin and resistant starch
intervention. Besides evidences supporting the fiber-degrading
function of putative degraders, our study confirms findings in the
literature and advances the understanding of the effects of dietary
fibers on the gut microbiome at the system level. First, the small
number of fiber degraders (five for inulin and two for resistant
starch) suggested that fiber-induced bacterial shifts are very
selective and occur in a restricted number of taxa. Second, the
absolute abundance of many fiber-degrading bacteria such as
taxa related to the genus Bifidobacterium, failed to expand in the
mouse gut on both fibers (Fig. S15), indicating that fiber-induced
bacterial enrichment cannot be simply predicted from their
in vitro growth. Third, we reasoned that the personalized fiber-
induced response of gut microbiota was largely determined by
the baseline abundance of fiber degraders and the ecological
interactions among these degraders. In our study, the inter-
individual variability of fiber-induced shift in propionate produc-
tion was associated with the baseline abundance of a key fiber
degrader Muribaculaceae. This is consistent with previous findings
that the abundance of a key starch‐degrader prior to resistant
starch intervention was indicative of whether an individual would
have a higher fecal butyrate response [16]. The ecological
interactions among fiber degraders, on the other hand, drive
the cascading alterations during the intervention. Our results
revealed that fiber-induced dynamics of murine gut microbiota
were largely driven by competitions and Muribaculaceae out-
competed other degraders in consuming both inulin and resistant
starch. Since the family Muribaculaceae was specific to the mouse

gut [53], it might have been adapted to the murine gut with
higher fitness.
We have shown that the inference of gLV model can be

experimentally validated, however, the generalizability of inferred
interactions should be taken with caution in contexts that differ
from the data used for inference, such as in different commu-
nities, and diet regimes, etc. For example, while we observed a
clear pairwise interaction in the co-culture experiment, we found
that Bacteroides stercoris was not inhibited in one of the three
baseline communities with the addition of B. adolescentis (Fig. 8E).
One possible explanation is the indirect effect mediated by other
species [54]; another explanation is higher-order interactions [55],
which are not captured by our current gLV framework. Regarding
to diet regimes, we found that the competitive interactions that
we validated by in vitro co-culture experiments still hold in the
absence of dietary fiber supplementation (Fig. S16). Conceptually,
whether the interspecies interactions are specific to diets would
depend on the underlying biological mechanisms. For example,
we may expect competitive interactions mediated by T6SS or
secreted secondary metabolites to be insensitive to the type of
nutrients provided; however, competitive interactions mediated
by nutrient utilization are more likely to differ across dietary
regimes. Despite these caveats, we have demonstrated the utility
of gLV inference to generate testable hypotheses of key species
and interspecies interactions [24].
Understanding the microbial responses and its association with

the baseline microbiota composition rightly is a critical step in
individualized dietary fiber intervention. To date, most of the
current studies are based on cross-sectional study design and
described the pre-to-post changes in abundance/concentration as
microbial responses to dietary intervention [13, 15]. However, it
should be noted that gut microbiome is a highly dynamic
ecosystem, and its response to dietary fibers could have temporal

Fig. 8 Inference and validation of ecological driver and interactions in human gut microbiome under inulin intervention. A The study
design of Baxter et al. [12]. In their study, the gut microbiota of 49 healthy volunteers was tracked before and during inulin intervention for
more than two weeks. B Growth of B. adolescentis with or without inulin (n= 3). C Growth of B. stercoris and B. adolescentis in monoculture and
co-culture experiments. In the co-culture experiment, strains were inoculated at a 1:1 initial ratio in media supplemented with inulin. The
abundance of individual strains in co-cultures was determined by qPCR. D B. adolescentis was added to three baseline microbial communities
derived from fecal samples of healthy volunteers. After in vitro culture of 24 h, the taxonomic profile of the microbial communities was
determined by metagenomic sequencing and shown in horizontal stacked bars. B.a (-): B. adolescentis was not added in the baseline
communities; B.a (+): B. adolescentis was added in the baseline communities. E. Absolute abundance (unit: OD600 × 10−2) of B. adolescentis (B. a.)
and B. stercoris (B.s.) after in vitro culture of 24 h. Dots: mean; bars: standard error. p values were computed using t-test (n = 3): ***p < 0.001;
*p < 0.05.

H. Liu et al.

2049

The ISME Journal (2022) 16:2040 – 2055



characteristics [38]. Consequently, the significance of microbial
responses may vary depending on the study endpoint used to
calculate pre-to-post changes. In our experiments, the changes in
propionate concentration from their baseline levels differ signifi-
cantly among the four vendors at day 5 but not at day 31 (Fig. S17).
Furthermore, due to the lack of control group data to assess the
intervention effects, pre-to-post changes that are supposed to
capture fiber-induced effects may be entirely attributable to random
temporal variations within each individual [56]. We speculate that
these two caveats are the main cause of “reproducibility crisis” [57]
among microbiome researches. In contrast, our analysis avoids the
above two caveats by incorporating longitudinal data and a control
group. Additionally, the use of dimensionality reduction in our
approach further benefits data visualization of inter-vendor varia-
tions in gut microbiota composition (Fig. 3).
Diet-induced changes in SCFAs are often transient and vanish

shortly after cessation of dietary intervention [9, 58–60]. Our study
is consistent with this result, by showing that SCFA concentrations
cannot be maintained at their peak and drop by 35-40% even
under continuous inulin intake until four weeks. The transient
responses in SCFAs were also observed in colorectal cancer
patients [61] and type 2 diabetes mellitus patients [6]; however, it
is unknown whether the reduced SCFAs in these human subjects
are resulted from lower dietary fiber intake. Despite the drop, our
data demonstrates that a continuous intervention that lasts for
31 days is sufficient to elevate and stabilize the SCFAs concentra-
tion, but it is not clear yet whether the elevated level persists after
the intervention discontinues. The in vivo SCFAs dynamics is
jointly determined by multiple metabolic processes, where the
two major ones are microbial production and host absorption. In
healthy individuals, 90-95% SCFAs produced in the colonic lumen
are absorbed by the gut mucosa [62]. While many studies used
fecal SCFAs concentrations as a proxy of their luminal levels,
neither of both represents the rate of production or absorption so
the declined phase of SCFAs in our study may be explained by
reduced production rate, increased absorption rate, or both. We
note that dietary fibers (e.g., inulin) may have direct effects on
host properties, including absorption of SCFA [63], regulation of
host mucosal signaling[64], etc. Due to the difficulty of measuring
fluxes in vivo, mathematical models that take both processes into
account show great promise in the estimation of their flux rates
from SCFA concentrations [65].
Characterizing the dynamics of gut microbiota and their inter-

individual variability with multi-omics data is an important priority
for microbiome research to further understand diet-induced
responses [66]. Such studies hold great promise to improve
human health and treat gut microbiome-associated diseases via
microbiome engineering. A key question in microbiome engineer-
ing with prebiotics is whether and to what extent can we enrich
the gut levels of beneficial bacteria using prebiotic compounds.
Microbiome engineering, as with other engineering disciplines,
requires computational tools to aid the design process. Predicting
bacterial responses to interventions in the human gut is nontrivial:
previous studies have repeatedly shown that bacteria able to
consume a fiber supplement in vitro may not be selectively
enriched in vivo, suggesting that the dietary response of a gut
bacterial taxa depends on the ecological context [67]. By inventing
a new application of gLV with uncertainty assessment to infer
primary fiber degraders and the associated interaction network,
we provide a generalizable computational approach to study the
ecological dynamics of the gut microbiome under dietary
interventions. Systems biology modeling, both top-down and
bottom-up (e.g., genome-scale metabolic models) approaches, is
much needed to understand the functional outputs of micro-
biome [68–70]. We foresee that applications of ecological
modeling in human cohorts with dense longitudinal sampling
will provide important insights for predictable dietary responses
and personalized nutrition [71].

METHODS
Animal experiments
Specific-pathogen-free (SPF) female C57BL/6J mice were obtained at
6 weeks of age from four different vendors, including Beijing (A Charles
River Company, Beijing, China), Hunan (Hunan Slac Jingda Laboratory
Animal Company, Ltd, Changsha, China), Guangdong (Guangdong Medical
Laboratory Animal Center, Foshan, China) and Shanghai (SLAC Laboratory
Animal Co., Ltd, Shanghai, China). Mice were maintained in a 12-h light/
dark cycle and allowed ad libitum access to food and water throughout the
experiment. After acclimatizing to the cellulose-based diet and housing
environment for 1 week, mice from each vendor were randomly separated
into three groups: cellulose group (n= 5), resistant starch group (n= 5),
and inulin group (n= 5). During the intervention period, mice in the
cellulose group were maintained on the cellulose-based diet, while mice in
the fiber intervention groups switched to a diet supplemented with inulin
(inulin group) or resistant starch (RS group). Composition of all diets
including the source of dietary fibers cellulose, resistant starch from maize
(HI-MAIZE 260, Ingredion Inc.), and inulin (Orafti HP, BENEO-Orafti) are
provided in Table S7. Fecal pellets from each mouse were freshly collected
over multiple time points: day 0 (before diet change), day 1, 3, 5, 8, 13, 19,
25, and 31 (Fig. 1A). Fecal samples were snap-frozen in liquid nitrogen and
stored at −80 °C until further processing. At every cage change (moving
the mice to a new clean cage with fresh bedding twice in one week), body
weight was individually measured, and food intake and fecal output of
each cage mice during the previous three days per cage were measured.
This study was approved by the Institutional Animal Care and Use
Committee of the Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences (SIAT-IACUC-190606-HCS-LHB-A0754).

Collection of human fecal samples
Fecal samples were collected from healthy volunteers. Fresh stool samples
were collected in sterile PBS pre-reduced with 0.1% (w/v) L-cysteine
hydrochloride. The samples were immediately weighed and transferred
into an anaerobic workstation (5% H2, 5% CO2, and 90% N2 at 37 °C). Then,
samples were homogenized with a vortex mixer and filtered using sterile
gauzes. Aliquots were placed in sterile cryogenic vials and frozen at −80 °C
until use. The protocol was approved by the Institutional Review Board/
Ethics committees at the Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences (#YSB-2022-Y02043).

In vitro culture of human gut bacteria strains
Bacteria were grown overnight in BHI media to the early stationary phase.
Bacteria cells were centrifuged and washed with fresh MiPro media before
inoculation. Pectin from citrus peel was purchased from Sigma-Aldrich (St.
Louis, MO, USA). Citrus pectin or inulin was added to the MiPro media [50]
at a final concentration of 1% (g/ml). Bacteria strains were cultured in an
anaerobic chamber (Coy, specify model; 85% N2, 10% H2, and 5% CO2) at
37 °C. In the monoculture experiment, the initial OD600 of bacterial cells is
0.01; in pairwise co-culture experiments, the initial OD600 of both strains is
0.01 (i.e. total OD600 is 0.02). Bacterial growth in mono-/co-culture
experiments was measured in 96-well plates using a GenTech Epoch2
plate reader. Strains of B. adolescentis, B. stercoris, B. vulgatus, and B.
finegoldii were isolated from healthy human stool samples. The whole-
genome sequence was used for taxonomic classification based on Genome
Taxonomy Database Toolkit (GTDB-tk) [72].

In vitro culture of human gut microbial communities
Three samples were chosen as baseline communities as they met the
following criteria: (1) absence of Bifidobacterium; (2) presence of Bacteroides
stercoris. The communities were cultured in 96-well plates using MiPro
media supplemented with inulin to examine the ecological response. Stock
solutions of inulin were sterilized by membrane filtration (Millex-GP filters
with 0.22-μm pores, Millipore) and added aseptically to the MiPro media at
a final concentration of 1% (g/ml). The baseline communities (20 μl) were
thawed and inoculated into the wells containing MiPro medium (980 μl).
Overnight culture of B. adolescentis was centrifuged, resuspended, and add
to the baseline communities (~4 × 107 CFU of B. adolescentis per well). The
communities were cultured in an anaerobic workstation for 24 h before
sequencing.

Quantification of fecal SCFA concentration by GC-MS
The SCFAs of mice fecal samples were analyzed by GC-MS [73, 74]. For the
sample extraction, 0.05 g of frozen feces were mixed with 300 µL of pure
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water containing caproic acid-6,6,6-d3 (CDN Isotopes, Quebec, Canada) as
internal standard (final concentration 20 μg/ml). After adding 1.0 mm
diameter zirconia/silica beads (BioSpec, Bartlesville, OK), feces were
homogenized for 20 s under 6500 rpm three times, then incubated at
4 °C with shaking for 30min, followed by centrifugation for 30min at
13,000 × g. Following extraction with anhydrous diethyl ether, the SCFA
extract was accurately transferred into a glass insert in a GC vial and
capped tightly after adding 5 µl of N, O-bis(trimethyl-silyl)-trifluoroaceta-
mide and vortexed for 5 s. The mixture was kept in the GC vial and
incubated at room temperature (22 °C) overnight (or over 8 h) before
loading to GC/MS. The analysis of acetic, propionic, iso-butyric, iso-valeric,
valeric, and butyric acids was performed by Agilent 8890/7000D triple
quadrupole GC/MS equipped with a capillary HP-5 ms capillary column
(30m × 0.25mm × 0.25 µm film thickness) (Agilent Technologies). The
analytes were quantified in the selected ion monitoring (SIM) mode using
the target ion and confirmed by confirmative ions. The integrated areas for
all SCFAs were normalized with the internal standard and quantified with
the standard curve, as previously described [74].

DNA extraction of samples from in vitro culture experiments
For co-culture samples, DNA extraction was performed in the 96-well
format using the TIANamp Bacteria DNA Kit (TIANGEN Biotech, Beijing)
following the corresponding lysis protocol for Gram-positive bacterial cells
using lysozyme and proteinase K. The genomic DNA of in vitro microbial
community culture samples were isolated using a DNeasy UltraClean
microbial kit (Qiagen, Hilden, Germany) and quantitated using the Qubit
fluorometer (ThermoFisher Scientific).

DNA extraction of fecal samples and quantification of
bacterial load
DNA of mice fecal samples was extracted using the QIAmp PowerFecal DNA
kit (Qiagen, #12830-50) following standard manufacturer procedures. DNA
samples were resuspended in Buffer C6 and quantitated using the Qubit
fluorometer (ThermoFisher Scientific). To quantitatively assess the bacterial
load, total bacteria density was determined using qPCR as previously
described [75]. A 466-bp fragment of the bacterial 16S rRNA gene was
amplified using the forward primer 5′-TCCTACGGGAGGCAGCAGT-3′ and
the reverse primer 5′-GGACTACCAGGGTATCTAATCCTGTT-3′. The absolute
abundance of a bacterial taxon was estimated by the multiplication of its
relative abundance and the total bacterial load.

Quantitative PCR of bacterial abundance in co-culture samples
Co-culture samples were processed for gDNA extraction and qPCR with
species-specific primers (Table S8). To quantify the abundance of the two-
bacterial species in co-culture, we performed quantitative PCR using a
CFX96 Real-Time System (Bio-Rad Laboratories) as previously described
[76]. Briefly, samples were analyzed in a 20-μl reaction mix consisting of
10 μl 1xSYBR Green Master Mix buffer (Takara, Dalian, China), 0.1 μM of
species-specific primer, and 3 μl of template DNA. Overnight single-strain
cultures were diluted with a twofold gradient to construct the standard
curve. The abundance of bacterial strains in the co-culture was estimated
based on the standard curves.

16S rRNA gene amplicon sequencing and shotgun
metagenomic sequencing
16S rRNA gene sequencing was performed as previously described with
modifications [77]. Library preparation was done using a two-step PCR
method. During the first step of PCR, primers S-D-Bact-0341-b-S-17
(forward) and S-D-Bact-0785-a-A-21 (reverse) were used to target and
amplify the v3-4 region [78], as well as to add second-step priming sites.
Dual index codes were added to each sample at the second PCR step. The
PCR products were purified with Agencourt AMPure XP magnetic beads
(Beckman Coulter, Brea, CA, USA) and quality controlled with TapeStation
(Agilent Technologies, Santa Clara, CA, USA). The final DNA concentrations
of the purified products were measured with Qubit 2.0 fluorometer
(Thermo Fisher Scientific). The purified products were pooled in equal
molar concentrations, and denatured following the Illumina protocol.
Sequencing was performed in a single run on NovaSeq 6000 (Illumina,
USA). Blank controls (no sample added, processed routinely, n= 4) were
included in the extraction process to control for contamination throughout
processing.
Metagenomic sequencing was performed using fecal samples from the

inulin diet group at day 0, 5, and 31. The extracted DNA sample was

purified using silica-based columns. Metagenomic sequence libraries
were prepared with at least 2 μg of total DNA using the Nextera XT DNA
sample Prep Kit (Illumina, San Diego, USA) with an equimolar pool of
libraries achieved independently based on Qubit 2.0 fluorometer results
combined with SYBR Green quantification (Thermo Fisher Scientific,
Massachusetts, USA). The indexed libraries were sequenced on NovaSeq
6000 (Illumina, USA) by Guangdong Magigene Biotechnology Co., Ltd
(Guangzhou, China).

Bioinformatics analysis
The 16S rRNA gene sequencing reads were analyzed by QIIME2 (version
2020.2) [79]. Demultiplexed paired-end reads were trimmed to remove
primers and low-quality bases with the q2-cutadapt plugin. The trimmed
sequences were denoised and joined with q2-dada2 plugin. Potential
reagent contaminants were identified using decontam package based on
either the frequency of the amplicon sequence variants (ASVs) in the blank
control or the negative correlation with DNA concentration [80]. The
generated feature table was filtered to remove ASVs present in only a
single sample and the remaining ASVs were used to construct a rooted
phylogenetic tree via q2-phylogeny. Rarefaction curve analysis of the data
obtained was used to estimate the completeness of microbial communities
sampling and performed using the iNEXT R package [81]. Subsequently, to
avoid sample-to-sample bias due to variable sequencing depth (different
number of reads per sample), samples were rarefied to 38,980 sequences
per sample. Rarefaction analysis showed that a great majority of the
bacteria species diversity and richness that could be sampled was captured
by our sequencing depth (Fig. S18), which indicated sufficient sequencing
depth for the majority of the analyzed samples. Estimated alpha diversity
metrics using q2-diversity. Beta diversity metrics (Aitchison distance) and
biplot were generated using DEICODE (robust Aitchison PCA, RPCA) [33].
Group significance between alpha and beta diversity indexes was
calculated with QIIME2 plugins using the Kruskal–Wallis test and
permutational multivariate analysis of variance (PERMANOVA), respec-
tively. To assign taxonomy to ASVs, the q2-feature-classifier based on the
classify-sklearn naïve Bayes taxonomy classifier was used with the SILVA
(v.138) as the reference database. Unless specified (Figs. 2C, 6B and Figs.
S1A, S7), ASVs were grouped to the lowest classified taxonomy level (i.e.,
grouping 16S rRNA gene sequencing at a specified taxonomic level,
excluding those classified at lower levels) for all data modeling and
analysis. The specified taxonomic levels are labeled with the prefix “s_”
(species level), “g_” (genus level), “f_” (family level), “o_” (order level), “c_”
(class level), “p_” (phylum level), and “k_” (kingdom level) to indicate the
taxonomic rank where grouping was operated. For example, “g_Bacter-
oides” clusters all sequences that are classified as Bacteroides at the genus
level but unclassified at the species level. Alternatively, ASV sequences
were grouped into operational taxonomic units (OTUs) at 97% similarity
(Fig. S7).
For metagenome analysis, raw sequencing reads were subjected to

quality filtering and barcode trimming using KneadData (v0.5.4) by
employing trimmomatic settings of a 4-base wide sliding window, with
average quality per base >20 and minimum length 90 bp. Reads mapping
to the mouse genome were removed. Kraken2 was run against the
genome taxonomy database (GTDB_r89_54k) with default parameters [82].
Following classification by Kraken2, Bracken was used to re-estimate
bacterial abundances at taxonomic levels from species to phylum using a
read length parameter of 150. Next, the filtered sequences were assembled
into contigs using metaSPAdes with default settings [83]. The gene
abundance was analyzed and calculated as previously described with
modifications [84]. Putative genes were then predicted on contigs longer
than 200 base pairs using Prodigal under metagenome mode (-p meta)
[85]. A non-redundant gene catalog was constructed with CD-HIT using the
parameters “-c 0.95 –aS 0.9” [86]. The abundance of each predicted gene
was evaluated by mapping reads back with KMA algorithm and then
normalized with the following equation: RPM= 1 M × (mapped reads/gene
length)/(sum of mapped reads/gene length) [87]. For all the predicted
genes, CAZymes were annotated using hmmsearch against the dbCAN2
database V9 (e value <1 × 10–10; coverage >0.3) [88]. The domain with the
highest coverage was selected for sequences overlapping multiple
CAZyme domains. For all samples, short genomic assemblies (<2000 bp)
that could have biased the subsequent analysis were first excluded.
Genomes were then binned using VAMB [89]. The binning results were
refined based on the bin quality assessment (completeness >75, and
contamination <15) of different binners from CheckM [90]. Taxonomic
classification of each bin was determined by GTDB-tk [72], and subjected
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to the prediction of polysaccharide utilization loci (PULz) using pipeline
PULpy [91].
Samples from the in vitro culture of human gut microbial communities

were determined by shallow metagenomic sequencing as previously
described [92]. Briefly, sequencing reads were trimmed and processed for
quality using Shi7 [93]. The taxa count tables from quality-controlled
sequences were generated using the SHOGUN pipeline [92]. The absolute
abundance of a bacterial taxon was estimated by multiplication of its
relative abundance and the absolute abundance of the community
(OD600).

Significance test of baseline-dependent responses
Sequential non-negative matrix factorization [39] was applied to transform
all high-dimensional time-series data from both intervention (inulin and
resistant starch) and control group into two-dimensional space. We chose
two factors because (1) reconstructed time series from the two latent
factors preserve the quantitative trends of the untransformed time series
sufficiently well and (2) two-dimensional data can be easily visualized. The
reduced representation of the intervention group xv;i ; yv;i

� �� �
and control

group pv;j ; qv;j
� �� �

, v v ¼ 1; 2; ¼ ; Vð Þ refers to the index of vendor and i, j
(i ¼ 1; 2; ¼ ;N and j ¼ 1; 2; ¼ ;N) refers to the index of mouse. For
each vendor v, both vectors were then standardized by subtracting

the mean vector of the vendor in the control group, i.e., xv;i ; yv;i
� � !

�
x0v;i ¼ xv;i �

PN

k¼1
pv;k
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N

�
and ðpv;j ; qv;jÞ ! ðp0v;j ¼ pv;j
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k¼1
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N Þ.
The statistical significance test of: (1) the responsiveness (i.e., whether

time series in the intervention group ðx0v;i ; y0v;iÞ differs from that of the
control group ðp0v;j ; q0v;jÞ regardless of vendor), and (2) the baseline
dependence (i.e., whether time series in the intervention group ðx0v;i ; y0v;iÞ
varies among vendors v), were performed separately using Permutational
Multivariate Analysis of Variance (PERMANOVA) with Minkowski distance as
the distance metric (the statistical module “statsmodels” in Python). We
then obtained two p values by comparing the differential responses
between the intervention and control group (“responsiveness”, pr) as well
as those between the four vendors in the intervention group (“baseline
dependence”, pb). If both p values are smaller than 0.05, we determined
that a quantity has a baseline-dependent response. For all significance
tests that require multiple test corrections, the Benjamini–Hochberg

procedure [94] was used for controlling the false discovery rate in multiple
test corrections.

Linear mixed-effects model
For statistical analysis of the time series of gut microbiota, we used linear
mixed-effects regression (function fitlme.m in MATLAB) with the following
model defined in Wilkinson notation: focal taxa ~ diet + vendor + other
taxa+ (1|day) + (1|mice id), where focal taxa represent the taxa whose
response to a specific dietary fiber is tested (absolute abundance), other
taxa represent all taxa excluding the focal one (absolute abundance), and
all other variables (diet, vendor, day and mice id) are categorical. We tested
the responses of the top 20 bacterial taxa with the highest mean absolute
abundance to inulin and resistant starch separately (cellulose group data
are always combined with diet): Each time one taxon was selected as the
focal taxa and the other 19 were treated as covariates. A taxon is
determined to be a diet responder if the coefficient associated with the
diet is statistically significant (p < 0.05).

Ecological inference of dietary fiber responses and
interspecies interactions
The generalized Lotka–Volterra (gLV) model describes how the absolute
abundance of bacterial species changes over time

dxi tð Þ
dt

¼ αixi tð Þ þ
XM

j¼1

βi;jxi tð Þxj tð Þ þ ϵiuðtÞxi tð Þ (1)

By dividing xi tð Þ on both sides, we can rewrite Eq. (1) as

d logðxi tð ÞÞ
dt

¼ αi þ
XM

j¼1

βi;jxj tð Þ þ ϵiuðtÞ (2)

where M is the number of bacterial taxa, xi is the absolute abundance of
taxon i (i ¼ 1; 2; ¼ ;M), αi is the basal growth rate, βi;j represents the
influence of taxon j (j ¼ 1; 2; ¼ ;M) on the growth of taxon i, ϵi is the
susceptibility coefficient that represents growth response to dietary fiber, u
(t) is a binary variable that indicates whether the fiber is administered at
time t. Bayesian regression techniques were used to parameterize the gLV
model, as similarly used in Morjaria et al. [40]. For each mouse
r (r ¼ 1; 2; ¼ ; P), Eq. (2) can be transformed into a matrix form that
incorporates all discrete-time points of measurements (.., k ¼ 1; 2; ¼ ;N)

log x1ð Þð Þ0t¼t1

..

.

log x1ð Þð Þ0t¼tN

..

.

log xMð Þð Þ0t¼t1

..

.

log xMð Þð Þ0t¼tN

2
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3
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.
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..
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..

.
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where xi;k ¼ xiðtkÞ and uk ¼ uðtkÞ. The log-derivatives of xi on the left-hand
side of Eq. (3) were estimated from a cubic spline interpolation. Using a
simplified notation for Eq. (3), i.e., Yr= XrCr, we can incorpate data from all
mice into a single regression model

Y1

..

.

YP

2

664

3

775 ¼
Xr 0 0

� � � � � � � � �
0 0 XP

2

64

3

75

C1

..

.

CP

2

664

3

775 (4)

The linear regression as described in Eq. (4) (for brevity Y ¼ XC) can be
further transformed into a Bayesian regression Y ¼ N XC; σð Þ where N
and σ represent normal distribution and standard deviation respectively.
Since gLV models the absolute abundance of bacterial taxa, we

multiplied the bacterial load by their relative abundance to calculate
absolute abundance. For all gLV inferences, the time-series data from all
mice in the treatment group and those in the control group (as long as the
control group data is available) were combined in one parameter fitting
based on the hypothesis that gLV parameters do not change their values
between diets [95]. We used uninformative Normal priors N 0; 1ð Þ for all
gLV parameters and Stan program [96] to produce posterior distributions
for each parameter after “no U-turn” sampling of 10,000 samples from at
least 3 independent Markov chain Monte Carlo traces. Since Stan is
computationally expensive, we limited the inferences of dietary fiber
responders to the top 20 bacterial taxa with the highest time-averaged
absolute abundances in the inulin (or resistant starch) and cellulose group.
Our Bayesian approach is conceptually similar to the Bayesian adaptive
lasso algorithm in MDSINE [51]; the key difference is that MDSINE uses a
hierarchical probability model and regularization to sample the variance
parameters in the Normal priors.

Random forest (RF) model
Model development was run in a pipeline by combining normalization
for data transformation, LASSO (least absolute shrinkage and selection
operator) for feature selection, and RF regression for data fitting and
prediction. The tolerance used in LASSO is 1e−5 and features whose
coefficients below this threshold were discarded and not used to build
RF regression model. Two data-split approaches were implemented. For
the “interpolation” approach, the mice from the same vendor were first
alphabetically labeled as A–D (for Hunan and Guangdong) or A–E (for
Beijing and Shanghai). Then the four mice with the same label (one per
vendor) were chosen to constitute the test set and the remaining mice
were mixed together to form the training set. For the “extrapolation”
approach, all mice from a specific vendor were chosen as the test set
while the training set includes all mice from the other three vendors. To
train each model, the pipeline was applied to the training data only and
five hyperparameters were tuned using fivefold cross-validation within
the training set and R2 as the scoring metric (GridSearchCV function of
the scikit-learn library in Python): constant that multiplies the L1 term
in LASSO (1e−4, 1e−3, 1e−2, 1e−1, 1), the number of features to
consider when looking for the best split in RF (square root, log2, 16%,
32%, 64%, 100% of all features), the maximum depth of the tree in RF
(2, 4, 8, 16), the minimum number of samples required to split an
internal node in RF (2, 4, 8, 16), and the minimum number of samples
required to be at a leaf node (1, 2, 4). We fixed the number of trees in RF
model to 2000.
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