Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A comparison of elbow and wrist kinematics and kinetics during swing-through versus reciprocal gait with crutches in persons with incomplete spinal cord injury

Abstract

Study design

Descriptive study with cross-sectional data collection.

Objectives

To analyse and compare the 3D kinematics and kinetics of thorax, elbow and wrist, and the spatio-temporal parameters during swing-through gait (SG) and reciprocal gait (RG).

Setting

Hospital Nacional de Parapléjicos in Toledo, Spain.

Methods

An instrumented biomechanical analysis of the upper body of 15 adults with an incomplete lumbar or thoracic spinal cord injury was performed using a marker motion capture system and load cell crutches. Five walks of each gait pattern were analysed.

Results

The elbow was in flexion, valgus and pronation and the wrist was in extension and ulnar deviation in both SG and RG. Their kinematic patterns were quite similar, except in elbow valgus and wrist extension in which statistically significant differences were observed. In the thorax prevailed flexion movement in SG and rotation movement in RG. The reaction forces in the elbow and the wrist were notably higher in SG than in RG, but the joint moments were similar in both gait patterns.

Conclusions

SG showed greater demands and RG showed higher requirements on trunk motor control. In addition, SG could increase the probability of back and neck pain. Therefore RG should be recommended, whenever possible, in incomplete spinal cord injured people.

Rehabilitative management should consider adapting properly the crutch height and the inclination cane, loading the minimum weight on the crutches, using cushioning devices, reducing the duration of support phase, and limiting the overall use time of the crutches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinematics of the thorax, elbow, wrist and crutch during swing-through and reciprocal gaits.
Fig. 2: Reaction forces of the elbow, wrist, crutch and forearm cuff during swing-through and reciprocal gaits.
Fig. 3: Moments of force of the elbow and wrist during swing-through and reciprocal gaits.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request

References

  1. World Health Organization Collaborators. Spine Cord Injury [Internet]. 2013 [cited 2020 Oct 18]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/spinal-cord-injury

  2. National Spinal Cord Injury Statistical Center. Annual report. Complete public version. [Internet]. 2017. Available from: https://www.nscisc.uab.edu/

  3. Joyce BM, Kirby RL. Canes, crutches and walkers. Am Fam Physician. 1991;43:535–42.

    CAS  PubMed  Google Scholar 

  4. Smidt GL, Mommens MA. System of reporting and comparing influence of ambulatory aids on gait. Phys Ther. 1980;60:551–8.

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg B, Hsu J. Atlas of Orthoses and Assistive Devices. 3rd ed. Philadelphia, PA: Mosby; 1997. 557–73 p.

  6. Viosca E, Soler-García C, Prat J, Cortés A. Análisis de la marcha con ayudas a la deambulación, ortesis y calzado ortopédico. In: Prat J, editor. Biomecánica de la marcha humana normal y patológica. Instituto de Biomecánica de Valencia; 2013. p. 212–52.

  7. Alcaraz-Rousselet MA. Rehabilitación de la lesión medular. In: Esclarín de Ruz A, editor. Lesión Medular: Enfoque multidisciplinario. Buenos Aires; Madrid: Médica Panamericana; 2009. p. 37–47.

  8. Boninger ML, Cooper RA, Robertson RN, Rudy TE. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system. Arch Phys Med Rehabil. 1997;78:364–72.

    Article  CAS  PubMed  Google Scholar 

  9. Dyson-Hudson TA, Kirshblum SC. Shoulder pain in chronic spinal cord injury, Part I: Epidemiology, etiology, and pathomechanics. J Spinal Cord Med. 2004;27:4–17.

    Article  PubMed  Google Scholar 

  10. Jain NB, Higgins LD, Katz JN, Garshick E. Association of shoulder pain with the use of mobility devices in persons with chronic spinal cord injury. PM R 2010;2:896–900.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Melis EH, Torres-Moreno R, Barbeau H, Lemaire ED. Analysis of assisted-gait characteristics in persons with incomplete spinal cord injury. Spinal Cord. 1999;37:430–9.

    Article  CAS  PubMed  Google Scholar 

  12. Opila KA, Nicol AC, Paul JP. Upper limb loadings of gait with crutches. J Biomech Eng. 1987;109:285–90.

    Article  CAS  PubMed  Google Scholar 

  13. Crosbie WJ, Nicol AC. Reciprocal aided gait in paraplegia. Paraplegia 1990;28:353–63.

    CAS  PubMed  Google Scholar 

  14. Noreau L, Richards CL, Comeau F, Tardif D. Biomechanical analysis of swing-through gait in paraplegic and non-disabled individuals. J Biomech. 1995;28:689–700.

    Article  CAS  PubMed  Google Scholar 

  15. Payo I, Perez-Rizo E, Iglesias A, Sanchez-Sanchez B, Torres-Lacomba M, Gil-Agudo A. Point-mass biomechanical model of the upper extremity during Lofstrand crutch-assisted gait. IEEE Trans Neural Syst Rehabil Eng. 2020;28:3022–30.

    Article  PubMed  Google Scholar 

  16. Rasouli F, Reed KB. Walking assistance using crutches: A state of the art review. J Biomech. 2020;98:109489.

    Article  PubMed  Google Scholar 

  17. World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–4.

    Article  Google Scholar 

  18. Kirshblum S, Burns S, Biering-Sørensen F, Donovan W, Graves D, Jha A, et al. International Standards for Neurological Classification of Spinal Cord Injury, Revised 2011. J Spinal Cord Med. 2011;34:535–46.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Compston J. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis (WHO Technical Report Series No 843). Ann Rheum Dis. 1995;54:548.

    Article  PubMed Central  Google Scholar 

  20. O’Driscoll SW, Jupiter JB, King GJ, Hotchkiss RN, Morrey BF. The unstable elbow. Instructional course lectures. 2001.

  21. Buckup J. Clinical Tests for the Musculoskeletal System. Clinical Tests for the Musculoskeletal System. 2019.

  22. Hattam P, Smeatham A. Special Tests in Musculoskeletal Examination. Special Tests in Musculoskeletal Examination. 2010.

  23. Perez-Rizo E, Trincado-Alonso F, Pérez-Nombela S, Del Ama-Espinosa A, Jiménez-Díaz F, Lozano-Berrio V, et al. Application of a model to analyze shoulder biomechanics in adult patients with spinal cord injury when walking with crutches in two different gait patterns. NeuroRehabilitation 2017;40:129–40.

    Article  PubMed  Google Scholar 

  24. Pérez-Rizo E, Solís-Mozos M, Belda-Lois JM, Page Á, Taylor J, Pons JL, et al. Instrumentation and biomechanical model for kinematic and kinetic analysis of upper limbs during gait with crutches. J Access Des All. 2013;3:127–48.

    Google Scholar 

  25. Slavens BA, Bhagchandani N, Wang M, Smith PA, Harris GF. An upper extremity inverse dynamics model for pediatric Lofstrand crutch-assisted gait. J Biomech. 2011;44:2162–7.

    Article  PubMed  Google Scholar 

  26. Requejo PS, Wahl DP, Bontrager EL, Newsam CJ, Gronley JK, Mulroy SJ, et al. Upper extremity kinetics during Lofstrand crutch-assisted gait. Med Eng Phys. 2005;27:19–29.

    Article  PubMed  Google Scholar 

  27. Wu G, Vanderhelm F, Dirkjanveeger H, Makhsous M, Vanroy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion?Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38:981–92.

    Article  CAS  PubMed  Google Scholar 

  28. Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. Winter DA, editor. Hoboken, NJ: John Wiley & Sons; 2009. 384 p.

  29. Zatsiorsky VM. Kinetics of human motion. Champaign, Illinois: Human kinetics; 2002.

  30. Dittuno PL, Dittuno JF. Walking index for spinal cord injury (WISCI II): Scale revision. Spinal Cord. 2001;39:654–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kim MO, Burns AS, Ditunno JF, Marino RJ. The Assessment of Walking Capacity Using the Walking Index for Spinal Cord Injury: Self-Selected Versus Maximal Levels. Arch Phys Med Rehabil. 2007;88:762–7.

    Article  PubMed  Google Scholar 

  32. Hall KM, Cohen ME, Wright J, Call M, Werner P. Characteristics of the functional independence measure in traumatic spinal cord injury. Arch Phys Med Rehabil. 1999;80:1471–6.

    Article  CAS  PubMed  Google Scholar 

  33. Barthel D, Mahoney F. Functional evaluation: The Barthel Index. Md State Med J 1965;14:61–5.

    PubMed  Google Scholar 

  34. Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82:9–13.

    Article  CAS  PubMed  Google Scholar 

  35. Van Hedel HJA, Dietz V, Curt A. Assessment of walking speed and distance in subjects with an incomplete spinal cord injury. Neurorehabil Neural Repair. 2007;21:295–301.

    Article  PubMed  Google Scholar 

  36. Goldberg B, LeBlanc M, Edelstein J. Canes, crutches, and walkers. In: Goldberg B, Hsu J, editors. Atlas of orthoses and assistive devices. 3rd ed. St Louis: Mosby-Year Book; 1997. p. 557–74.

  37. Hall J, Clarke A, Harrison R. Guide lines for prescription of walking frames. Physiotherapy 1990;76:118–20.

    Article  Google Scholar 

  38. Haubert LL, Gutierrez DD, Newsam CJ, Gronley JK, Mulroy SJ, Perry J. A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2006;87:63–70.

    Article  PubMed  Google Scholar 

  39. Slavens BA, Sturm PF, Harris GF. Upper extremity inverse dynamics model for crutch-assisted gait assessment. J Biomech. 2010;43:2026–31.

    Article  PubMed  Google Scholar 

  40. Dalyan M, Cardenas DD, Gerard B. Upper extremity pain after spinal cord injury. Spinal Cord. 1999;37:191–5.

    Article  CAS  PubMed  Google Scholar 

  41. Sie IH, Waters RL, Adkins RH, Gellman H. Upper extremity pain in the postrehabilitation spinal cord injured patient. Arch Phys Med Rehabil. 1992;73:44–8.

    CAS  PubMed  Google Scholar 

  42. Slavens BA, Frantz J, Sturm PF, Harris GF. Upper extremity dynamics during Lofstrand crutch-assisted gait in children with myelomeningocele. J Spinal Cord Med. 2007;30:S165–71.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Slavens BA, Sturm PF, Bajournaite R, Harris GF. Upper extremity dynamics during Lofstrand crutch-assisted gait in children with myelomeningocele. Gait Posture. 2009;30:511–7.

    Article  PubMed  Google Scholar 

  44. Konop KA, Strifling KMB, Wang M, Cao K, Schwab JP, Eastwood D, et al. A biomechanical analysis of upper extremity kinetics in children with cerebral palsy using anterior and posterior walkers. Gait Posture. 2009;30:364–9.

    Article  PubMed  Google Scholar 

  45. Strifling KMB, Lu N, Wang M, Cao K, Ackman JD, Klein JP, et al. Comparison of upper extremity kinematics in children with spastic diplegic cerebral palsy using anterior and posterior walkers. Gait Posture. 2008;28:412–9.

    Article  PubMed  Google Scholar 

  46. Bhagchandani N, Slavens B, Wang M, Harris G. Upper extremity biomechanical model of crutch-assisted gait in children. Proc 31st Annu Int Conf IEEE Eng Med Biol Soc Eng Futur Biomed EMBC. 2009;2009:7164–7.

    Google Scholar 

  47. Zambudio Periago R. Ayudas para la marcha. In: Prótesis ortesis ayudas técnicas de zambudio. 2009. p. 301–7.

  48. Faruqui SR, Jaeblon T. Ambulatory assistive devices in orthopaedics: uses and modifications. J Am Acad Orthop Surg. 2010;18:41–50.

    Article  PubMed  Google Scholar 

  49. Liew BXW, Rugamer D, Stocker A, De Nunzio AM. Classifying neck pain status using scalar and functional biomechanical variables – development of a method using functional data boosting. Gait Posture. 2020;76:146–50.

    Article  PubMed  Google Scholar 

  50. Yeung EH, Chow DH, Su IY. Kinematic and electromyographic studies on unaided, unilateral and bilateral crutch walking in adolescents with spastic diplegia. Prosthet Orthot Int. 2012;36:63–70.

    Article  PubMed  Google Scholar 

  51. Hash TW, Bogner EA. Nerve entrapment and compression syndromes of the elbow. Semin Musculoskelet Radio. 2010;14:438–48.

    Article  Google Scholar 

  52. Antuña S. Biomecánica del codo y sus implicaciones en el diseño de recambios articulares. Biomecánica. 2005;12:35–9.

    Google Scholar 

  53. Hernández Barrios D. Biomecánica del complejo articular del codo. Musculatura responsable de los movimientos y acciones asociadas [Internet] http://www.sld.cu/sitios/rehabilitacion-bio/temas.php?idv=18660 [cited 2020 Jul 2]. Available from

  54. Werner R, Waring W, Davidoff G. Risk factors for median mononeuropathy of the wrist in postpoliomyelitis patients. Arch Phys Med Rehabil. 1989;70:464–7.

    Article  CAS  PubMed  Google Scholar 

  55. Perry J. Gait Analysis: Normal and Pathological Function. Journal of Pediatric Orthopaedics. Perry J, Burnfield JM, editors. Journal of Sport Science & Medicine. New Jersey; 2010.

  56. Sánchez-Lacuesta J, Prat J, Hoyos JV, Viosca E, Soler-Gracia C, Comín M, et al. Biomecánica de la marcha humana y patológica. Prat J, editor. Valencia: Instituto de Biomecánica de Valencia; 2013.

Download references

Acknowledgements

The authors thank Soraya Martín, Vicente Lozano and Fernando Trincado who were involved in the data collection.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Consejería de Sanidad of Junta de Comunidades de Castilla-La Mancha (Spain) under contract no. PI/2016/050. The funders played no role in the design, conduct, or reporting of this study.

Author information

Authors and Affiliations

Authors

Contributions

E.P.: Idea, conception and design of the study, design of the biomechanical model, acquisition of data, analysis and interpretation, drafting the manuscript; M.T.: Supervision, support in terms of spinal cord injury, analysis and interpretation, drafting the manuscript; I.P.: Design of the biomechanical model, interpretation of data, revision of the manuscript; A.G.: Design of the study, interpretation of data, supervision in terms of spinal cord injury, revision of the manuscript; B.S.: Design of the study, analysis and interpretation, analysis and interpretation, drafting the manuscript.

Corresponding author

Correspondence to María Torres-Lacomba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study protocol was approved by the Clinical Research Committee of Hospital Virgen de la Salud of Toledo (86/10). The study complies with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rizo, E., Torres-Lacomba, M., Payo, I. et al. A comparison of elbow and wrist kinematics and kinetics during swing-through versus reciprocal gait with crutches in persons with incomplete spinal cord injury. Spinal Cord 61, 391–398 (2023). https://doi.org/10.1038/s41393-023-00902-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41393-023-00902-5

Search

Quick links