Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Genetic susceptibility for retinopathy of prematurity and its associated comorbidities

Abstract

Background

Retinopathy of prematurity (ROP) is one of the leading cause of child blindness. Preterm newborns of very low gestational age (GA) and very low birth weight are at the greatest risk. Our objective was to evaluate the role of genetic variants associated with ROP risk and its comorbidities in an Argentinian sample of premature infants.

Methods

A sample of 437 preterm infants <33 weeks GA, born at a maternity hospital in Tucumán, Argentina, 2005–2010, was analyzed. Environmental factors, perinatal outcomes, and fourteen single nucleotide polymorphisms associated with ROP were evaluated, comparing ROP with non-ROP newborns. A lasso logistic regression was performed to select variables; then, a conditional logistic regression was used to identify ROP maternal and perinatal risk factors adjusting by maternal and gestational ages, respectively.

Results

ROP maternal risk factors were alcohol intake, periodontal infections, and severe stress. Respiratory distress, sepsis, and intracranial hemorrhage were the ROP perinatal risk factors. Markers rs186085 of EPAS1 and rs427832 of AGTR1 were significantly associated with ROP newborns.

Conclusion

We identified three maternal and three perinatal risk factors associated with ROP. Genes EPAS1 and AGTR1, involved in angiogenesis and vascularization, were identified to be of risk for ROP.

Impact

  • Genetic and environmental risk factors associated with ROP and its comorbidities are evaluated in a Latin American population.

  • Genes EPAS1 and AGTR1, involved in angiogenesis and vascularization, were identified to be of risk for ROP.

  • Three maternal and three perinatal risk factors associated with ROP were also identified.

  • A matrix of significant relationships among genetic markers and comorbidities is presented.

  • Reported data may help develop more effective preventive measures for ROP in the Latin American region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Text bloks depicts the study inclusion and exclusion criteria.
Fig. 2: Significant relationships among genetic markers and comorbidities of retinopathy of prematurity.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fierson, W. M. American Academy of Pediatrics, Section on Ophthalmology; American Academy of Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus; American Association of Certified Orthoptists. Screening Examination of Premature Infants for Retinopathy of Prematurity [published correction appears in Pediatrics. 2019 Mar;143(3):]. Pediatrics 142, e20183061 (2018).

    Article  PubMed  Google Scholar 

  2. Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Preterm Birth 1: Epidemiology and Causes of Preterm Birth. Obstet. Anesth. Dig. 29, 6–7 (2009).

    Article  Google Scholar 

  3. Blencowe, H., Lawn, J. E., Vazquez, T., Fielder, A. & Gilbert, C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr. Res 74, 35–49 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bouzas, L. et al. Retinopathy of prematurity in the XXI century in a developing country: an emergency that should be resolved. Pediatrics 66, 551–558 (2007).

    CAS  Google Scholar 

  5. van Sorge, A. J. et al. Nationwide inventory of risk factors for retinopathy of prematurity in the Netherlands. J. Pediatr. 164, 494–498 (2014).

    Article  PubMed  Google Scholar 

  6. Ministry of Health of Argentina, National Program for the Prevention of Blindness in Childhood due to Retinopathy of Premature. Resolution 1613/2010. https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-1613-2010-172868 (2010). Last accessed March 23 (2022).

  7. Dammann, O., Rivera, J. C. & Chemtob, S. The prenatal phase of retinopathy of prematurity. Acta Paediatr. 110, 2521–2528 (2021).

    Article  PubMed  Google Scholar 

  8. Kim, S. J. et al. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv. Ophthalmol. 63, 618–637 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fortes Filho, J. B. et al. Is being small for gestational age a risk factor for retinopathy of prematurity? A study with 345 very low birth weight preterm infants. J. Pediatr. 85, 48–54 (2009).

  10. Gonçalves, E. et al. Incidence and risk factors for retinopathy of prematurity in a Brazilian reference service. Sao Paulo Med. J. 132, 85–91 (2014).

    Article  PubMed  Google Scholar 

  11. Binenbaum, G. Algorithms for the prediction of retinopathy of prematurity based on postnatal weight gain. Clin. Perinatol. 40, 261–270 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carrion, J. Z., Fortes Filho, J. B., Tartarella, M. B., Zin, A. & Jornada, I. D. Jr Prevalence of retinopathy of prematurity in Latin America. Clin. Ophthalmol. 5, 1687–1695 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Darlow, B. A. et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics 115, 990–996 (2005).

    Article  PubMed  Google Scholar 

  14. Hartnett, M. E. et al. Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Invest. Ophthalmol. Vis. Sci. 55, 6194–6203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bizzarro, M. J. et al. Genetic susceptibility to retinopathy of prematurity. Pediatrics 118, 1858–1863 (2006).

    Article  PubMed  Google Scholar 

  16. Cooke, R. W., Drury, J. A., Mountford, R. & Clark, D. Genetic polymorphisms and retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 45, 1712–1715 (2004).

    Article  PubMed  Google Scholar 

  17. Vannay, A. et al. Association of genetic polymorphisms of vascular endotelial growth factor and risk for proliferative retinopathy of prematurity. Pediatr. Res. 57, 396–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed, S. et al. Genetic contributions to the development of retinopathy of prematurity. Pediatr. Res. 65, 193–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gimenez, L. G. et al. Maternal and neonatal epidemiological features in clinical subtypes of preterm birth. J. Matern. Fetal Neonatal Med. 29, 3153–3161 (2016).

    Article  PubMed  Google Scholar 

  20. Kaluarachchi, D. C. et al. Polymorphisms in NR5A2, gene encoding liver receptor homolog-1 are associated with preterm birth. Pediatr. Res. 79, 776–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gimenez, L. G. et al. Association of candidate gene polymorphisms with clinical subtypes of preterm birth in a Latin American population. Pediatr. Res. 82, 554–559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elias, D. et al. Preterm birth and genitourinary tract infections: assessing gene-environment interaction. Pediatr. Res. 90, 678–683 (2021).

    Article  PubMed  Google Scholar 

  23. Elias, D. et al. Preterm birth etiological pathways: a Bayesian networks and mediation analysis approach. Pediatr. Res. 91, 1882–1889 (2022).

    Article  PubMed  Google Scholar 

  24. Hutchinson, A. K., Saunders, R. A., O’Neil, J. W., Lovering, A. & Wilson, M. E. Timing of initial screening examinations for retinopathy of prematurity. Arch. Ophthalmol. 116, 608–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Grupo ROP Argentina. Ministerio de Salud. Guía de Práctica Clínica para la prevención, diagnóstico y tratamiento de la retinopatía del prematuro (ROP). (Buenos Aires, Ministerio de Salud, 2015).

  26. International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 123, 991–999 (2005).

    Article  Google Scholar 

  27. Krupitzki, H. B. et al. Environmental risk factors and perinatal outcomes in preterm newborns, according to family recurrence of prematurity. Am. J. Perinatol. 30, 451–461 (2013).

    PubMed  Google Scholar 

  28. Bahadue, F. L. & Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 11, CD001456 (2012).

    PubMed  Google Scholar 

  29. Sweet, D. G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology 115, 432–450 (2019).

    Article  PubMed  Google Scholar 

  30. Flannery, D. D., Edwards, E. M., Coggins, S. A., Horbar, J. D. & Puopolo, K. M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics 150, e2022058813 (2022).

    Article  PubMed  Google Scholar 

  31. Maller, V. V. & Cohen, H. L. Neurosonography: Assessing the Premature Infant. Pediatr. Radiol. 47, 1031–1045 (2017).

    Article  PubMed  Google Scholar 

  32. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediatrics 92, 529–534 (1978).

    Article  CAS  Google Scholar 

  33. Lim, M. & Hastie, T. Learning interactions via hierarchical group-lasso regularization. J. Comput. Graph. Stat. 24, 627–654 (2015).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  34. Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulindependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nykjaer, C. et al. Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort. J. Epidemiol. Community Health 68, 542–549 (2014).

    Article  PubMed  Google Scholar 

  36. Ikehara, S. et al. Association between maternal alcohol consumption during pregnancy and risk of preterm delivery: The Japan Environment and Children’s Study. BJOG 126, 1448–1454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gauthier, T. W., Guidot, D. M., Kelleman, M. S., McCracken, C. E. & Brown, L. A. Maternal Alcohol Use During Pregnancy and Associated Morbidities in Very Low Birth Weight Newborns. Am. J. Med. Sci. 352, 368–375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Traylor, C. S., Johnson, J. D., Kimmel, M. C. & Manuck, T. A. Effects of psychological stress on adverse pregnancy outcomes and nonpharmacologic approaches for reduction: an expert review. Am. J. Obstet. Gynecol. Mfm. 2, 100229 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mehmet, S. et al. One-year experience in the retinopathy of prematurity: frequency and risk factors, short-term results and follow-up. Int. J. Ophthalmol. 4, 634–640 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Hellström, A., Smith, L. E. & Dammann, O. Retinopathy of prematurity. Lancet 382, 1445–1457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, P. et al. Association of VEGF gene polymorphisms with advanced retinopathy of prematurity: a meta-analysis. Mol. Biol. Rep. 39, 10731–10737 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–1028 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Naug, H. L., Browning, J., Gole, G. A. & Gobe, G. Vitreal macrophages express vascular endothelial growth factor in oxygen-induced retinopathy. Clin. Exp. Ophthalmol. 28, 48–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Watson, C. J., Webb, N. J., Bottomley, M. J. & Brenchley, P. E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12, 1232–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Aiken, J. W. & Vane, J. R. Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J. Pharmacol. Exp. Ther. 184, 678–687 (1973).

    CAS  PubMed  Google Scholar 

  47. Bányász, I. et al. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur. Cytokine Netw. 17, 266–270 (2006).

    PubMed  Google Scholar 

  48. Sabnis, A. et al. Intestinal vascular endothelial growth factor is decreased in necrotizing enterocolitis. Neonatology 107, 191–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Bowker, R. M., Yan, X. & De Plaen, I. G. Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system. Semin. Fetal Neonatal Med. 23, 411–415 (2018).

    Article  PubMed  Google Scholar 

  50. Gao, X. et al. Association of VEGFA polymorphisms with necrotizing enterocolitis in Chinese Han population. Pediatr. Neonatol. 60, 129–134 (2019).

    Article  PubMed  Google Scholar 

  51. Ilguy, S. et al. The relationship of retinopathy of prematurity with brain-derivated neurotrophic factor, vascular endothelial growth factor-A, endothelial PAD domain protein 1 and nitric oxide synthase 3 gene polymorphisms. Ophthalmic Genet. 42, 725–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Rathi, S. et al. Abnormal Complement Activation and Inflammation in the Pathogenesis of Retinopathy of Prematurity. Front. Immunol. 8, 1868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Appelboom, G. et al. Complement factor H Y402H polymorphism is associated with an increased risk of mortality after intracerebral hemorrhage. J. Clin. Neurosci. 18, 1439–1443 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Guo, H. et al. Genetics of Spontaneous Intracerebral Hemorrhage: Risk and Outcome. Front. Neurosci. 11, 874962 (2022). 16.

    Article  Google Scholar 

  55. Poggi, C. et al. Genetic Contributions to the Development of Complications in Preterm Newborns. PLoS One 10, e0131741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sarlos, S. & Wilkinson-Berka, J. L. The renin-angiotensin system and the developing retinal vasculature. Invest. Ophthalmol. Vis. Sci. 46, 1069–1077 (2005).

    Article  PubMed  Google Scholar 

  57. Otani, A., Takagi, H., Suzuma, K. & Honda, Y. Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ. Res. 82, 619–628 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the health care team at Maternidad Nuestra Señora de la Merced, Tucumán, Argentina., for their hard work and support and to Mariana Piola and Alejandra Mariona at ECLAMC who provided technical support.

Funding

The research program was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-MINCyT), grant numbers PICT-2018-4275 (PI: López Camelo JS) and PICT-2018-4285 (PI: Lucas G. Gimenez), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and INAGEMP [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)] grant 465549/2014-4.

Author information

Authors and Affiliations

Authors

Contributions

LGG, JAG, and SG made substantial contributions to design, acquisition of data, analysis and interpretation of data, drafting the article and approving the final manuscript as submitted. JSLC, HBK, and JZB made substantial contributions to design, acquisition of data, critical manuscript revision for important intellectual content, and approving of the final version as submitted. DEE, BC, MRS, HC, FAP, SLH, JR, VRC, RU, CS, MN, and MR made contributions to data analysis and interpretation, drafting and editing of the article, and approved the final manuscript as submitted.

Corresponding author

Correspondence to Lucas G. Gimenez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Before enrollment, signed informed consent was obtained from all participating families. Parents provided consent for themselves and for the neonates.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimenez, L.G., Gili, J.A., Elias, D.E. et al. Genetic susceptibility for retinopathy of prematurity and its associated comorbidities. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03068-9

Search

Quick links