Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Rectal temperature after hypoxia-ischemia predicts white matter and cortical pathology in the near-term ferret

Abstract

Background

Neonatal encephalopathy (NE) remains a common cause of infant morbidity and mortality. Neuropathological corollaries of NE associated with acute hypoxia-ischemia include a central injury pattern involving the basal ganglia and thalamus, which may interfere with thermoregulatory circuits. Spontaneous hypothermia (SH) occurs in both preclinical models and clinical hypoxic-ischemic NE and may provide an early biomarker of injury severity. To determine whether SH predicts the degree of injury in a ferret model of hypoxic-ischemic NE, we investigated whether rectal temperature (RT) 1 h after insult correlated with long-term outcomes.

Methods

Postnatal day (P)17 ferrets were presensitized with Escherichia coli lipopolysaccharide before undergoing hypoxia-ischemia/hyperoxia (HIH): bilateral carotid artery ligation, hypoxia-hyperoxia-hypoxia, and right ligation reversal. One hour later, nesting RTs were measured.

Results

Animals exposed to HIH were separated into normothermic (NT; ≥34.4 °C) or spontaneously hypothermic (SH; <34.4 °C) groups. At P42, cortical development, ex vivo MRI, and neuropathology were quantitated. Whole-brain volume and fractional anisotropy in SH brains were significantly decreased compared to control and NT animals. SH brains also had significantly altered gyrification, greater cortical pathology, and increased corpus callosum GFAP staining relative to NT and control brains.

Conclusion

In near-term-equivalent ferrets, nesting RT 1 h after HIH may predict long-term neuropathological outcomes.

Impact

  • High-throughput methods to determine injury severity prior to treatment in animal studies of neonatal brain injury are lacking.

  • In a gyrified animal model of neonatal inflammation-sensitized hypoxic-ischemic brain injury in the ferret, rectal temperature 1 h after hypoxia predicts animals who will have increased cortical pathology and white matter changes on MRI.

  • These changes parallel similar responses in rodents and humans but have not previously been correlated with long-term neuropathological outcomes in gyrified animal models.

  • Endogenous thermoregulatory responses to injury may provide a translational marker of injury severity to help stratify animals to treatment groups or predict outcome in preclinical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: P17 hypoxic-ischemia timeline.
Fig. 2: Post-insult nesting temperatures.
Fig. 3: Post-HIE body weights.
Fig. 4: Magnetic resonance imaging and diffusion tensor imaging.
Fig. 5: Brain gyrification and cortical pathology.
Fig. 6: Quantitative immunohistochemistry.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Organization WH. Newborn Mortality. https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-mortality-report-2021 (2022).

  2. Patel, S. D. et al. Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr. Res. 78, 264–271, https://doi.org/10.1038/pr.2015.100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thayyil, S. et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 9, e1273–e1285, https://doi.org/10.1016/S2214-109X(21)00264-3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 1, Cd003311, https://doi.org/10.1002/14651858.CD003311.pub3 (2013).

    Article  Google Scholar 

  5. Zhou, K. Q., Davidson, J. O., Bennet, L. & Gunn, A. J. Combination treatments with therapeutic hypothermia for hypoxic-ischemic neuroprotection. Dev. Med. Child Neurol. 62, 1131–1137, https://doi.org/10.1111/dmcn.14610 (2020).

    Article  PubMed  Google Scholar 

  6. Victor, S. et al. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 181, 875–887, https://doi.org/10.1007/s00431-021-04320-8 (2022).

    Article  PubMed  Google Scholar 

  7. O'Mara, K. & McPherson, C. Neuroprotective agents for neonates with hypoxic-ischemic encephalopathy. Neonatal. Netw. 40, 406–413, https://doi.org/10.1891/11-T-755 (2021).

    Article  PubMed  Google Scholar 

  8. Wu, Y. W. et al. Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns. N. Engl. J. Med. 387, 148–159, https://doi.org/10.1056/NEJMoa2119660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kao, Y. J. et al. Early neuroimaging and ultrastructural correlates of injury outcome after neonatal hypoxic-ischaemia. Brain Commun. 3, fcab048, https://doi.org/10.1093/braincomms/fcab048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wood, T. et al. Rectal temperature in the first five hours after hypoxia-ischemia critically affects neuropathological outcomes in neonatal rats. Pediatr. Res. 83, 536–544, https://doi.org/10.1038/pr.2017.51 (2018).

    Article  PubMed  Google Scholar 

  11. Busto, R. et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb Blood Flow Metab. 7, 729–738, https://doi.org/10.1038/jcbfm.1987.127 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Enweronu-Laryea, C. et al. Core temperature after birth in babies with neonatal encephalopathy in a sub-Saharan African hospital setting. J. Physiol. 597, 4013–4024, https://doi.org/10.1113/JP277820 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Flibotte, J. et al. Blanket temperature during therapeutic hypothermia and outcomes in hypoxic ischemic encephalopathy. J. Perinatol. 42, 348–353, https://doi.org/10.1038/s41372-021-01302-4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mietzsch, U. et al. Active cooling temperature required to achieve therapeutic hypothermia correlates with short-term outcome in neonatal hypoxic-ischaemic encephalopathy. J. Physiol. 598, 415–424, https://doi.org/10.1113/JP278790 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Mietzsch U, et al. Temperature dysregulation during therapeutic hypothermia predicts long-term outcome in neonates with HIE. J. Cereb. Blood Flow Metab. 2023. In Press.

  16. Wu, T. W. et al. Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front. Neurol. 9, 293, https://doi.org/10.3389/fneur.2018.00293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797, https://doi.org/10.1113/expphysiol.2007.041848. (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Utter, A. A. & Basso, M. A. The basal ganglia: an overview of circuits and function. Neurosci. Biobehav. Rev. 32, 333–342, https://doi.org/10.1016/j.neubiorev.2006.11.003 (2008).

    Article  PubMed  Google Scholar 

  19. Burnard, E. D. & Cross, K. W. Rectal temperature in the newborn after birth asphyxia. Br. Med. J. 2, 1197–1199, https://doi.org/10.1136/bmj.2.5106.1197 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jayasinghe, D. Innate hypothermia after hypoxic ischaemic delivery. Neonatology 107, 220–223, https://doi.org/10.1159/000369119 (2015).

    Article  PubMed  Google Scholar 

  21. Corry KA, et al. Evaluating neuroprotective effects of uridine, erythropoietin, and therapeutic hypothermia in a ferret model of inflammation-sensitized hypoxic-ischemic encephalopathy. Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22189841

  22. Wood T, et al. A ferret model of inflammation-sensitized late preterm hypoxic-ischemic brain injury. J. Vis. Exp. (153) (2019). https://doi.org/10.3791/60131

  23. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical computing. (2019).

  24. Wieshmann, U. C. et al. Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn. Reson. Imaging. 17, 1269–1274, https://doi.org/10.1016/s0730-725x(99)00082-x (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Vijayan, V. K., Lee, Y. L. & Eng, L. F. Increase in glial fibrillary acidic protein following neural trauma. Mol. Chem. Neuropathol. 13, 107–118, https://doi.org/10.1007/BF03159912 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y., Silverstein, F. S., Skoff, R. & Barks, J. D. Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr. Res. 51, 25–33, https://doi.org/10.1203/00006450-200201000-00007 (2002).

    Article  PubMed  Google Scholar 

  27. Ginsberg, M. D. et al. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab. Rev. 4, 189–225 (1992).

    CAS  PubMed  Google Scholar 

  28. Jang, S. H. & Kwon, H. G. Injury of the hypothalamus in patients with hypoxic-ischemic brain injury: a diffusion tensor imaging study. Am. J. Phys. Med. Rehabil. 97, 160–163, https://doi.org/10.1097/PHM.0000000000000813 (2018).

    Article  PubMed  Google Scholar 

  29. Hutchinson, E. B. et al. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis. Neuroimage 152, 575–589, https://doi.org/10.1016/j.neuroimage.2017.03.009 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Gluckman, P. D. et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670, https://doi.org/10.1016/S0140-6736(05)17946-X (2005).

    Article  PubMed  Google Scholar 

  31. Tsuda, K. et al. Body temperature, heart rate, and short-term outcome of cooled infants. Ther. Hypothermia Temp. Manag. 9, 76–85, https://doi.org/10.1089/ther.2018.0019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Falck, M. et al. Hypothermic neuronal rescue from infection-sensitised hypoxic-ischaemic brain injury is pathogen dependent. Dev. Neurosci. 39, 238–247, https://doi.org/10.1159/000455838 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Falck, M. et al. Neonatal systemic inflammation induces inflammatory reactions and brain apoptosis in a pathogen-specific manner. Neonatology 113, 212–220, https://doi.org/10.1159/000481980 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Osredkar, D. et al. Hypothermia does not reverse cellular responses caused by lipopolysaccharide in neonatal hypoxic-ischaemic brain injury. Dev. Neurosci. 37, 390–397, https://doi.org/10.1159/000430860 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Simar Virk and Annamarie Shearlock for assisting in brain measurements and preparing brains for MRI.

Funding

This work was funded by the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Data acquisition: O.R.W., K.A.C., D.H.M., J.B.L., J.M.S., T.R.W. Data analysis: O.R.W., T.R.W. Interpretation: O.R.W., U.M., S.E.J., T.R.W. Manuscript drafting: O.R.W., T.R.W. Manuscript editing and revision: O.R.W., K.A.C., D.H.M., J.B.L., J.M.S., U.M., S.E.J.,T.R.W. Approval of final manuscript: O.R.W., K.A.C., D.H.M., J.B.L., J.M.S., U.M., S.E.J., T.R.W.

Corresponding author

Correspondence to Thomas R. Wood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, O.R., Corry, K.A., Moralejo, D.H. et al. Rectal temperature after hypoxia-ischemia predicts white matter and cortical pathology in the near-term ferret. Pediatr Res 95, 84–92 (2024). https://doi.org/10.1038/s41390-023-02793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02793-x

Search

Quick links