Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Hemodynamic impacts of apelin-13 in a neonatal lamb model of septic peritonitis

Abstract

Background

Apelins are potential candidate therapeutic molecules for hemodynamic support. The objective of this study was to assess the hemodynamic impacts of apelin-13 in a neonatal lamb model of septic shock.

Methods

Lambs were randomized to receive apelin-13 or normal saline. Septic shock was induced by injecting a fecal slurry into the peritoneal cavity. Lambs underwent volume repletion (30 mL/kg over 1 h) followed by intravenous administration of 5 incremental doses (D) of apelin-13 (D1 = 0.039 to D5 = 19.5 µg/kg/h) or normal saline.

Results

Following fecal injection, mean arterial pressure (MAP) and cardiac index (CI) dropped in both groups (p < 0.05). The MAP decreased non-significantly from D1 to D5 (p = 0.12) in the saline group, while increasing significantly (p = 0.02) in the apelin group (−12 (−17; 12) vs. +15 (6; 23) % (p = 0.012)). Systemic vascular resistances were higher in the apelin-13 group at D5 compared to the saline group (4337 (3239, 5144) vs. 2532 (2286, 3966) mmHg/min/mL, respectively, p = 0.046). The CI increased non-significantly in the apelin-13 group.

Conclusion

Apelin-13 increased MAP in a neonatal lamb septic shock model.

Impact

  • Administration of apelin-13 stabilized hemodynamics during the progression of the sepsis induced in this neonatal lamb model.

  • Systemic vascular resistances were higher in the apelin-13 group than in the placebo group. This suggests ontogenic differences in vascular response to apelin-13 and warrants further investigation.

  • This study suggests that apelin-13 could eventually become a candidate for the treatment of neonatal septic shock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hemodynamic parameters.
Fig. 2: Urinary output.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Shane, A. L., Sánchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

    Article  PubMed  Google Scholar 

  2. Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P. & Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl Acad. Sci. USA 97, 9753–9758 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andreis, D. T. & Singer, M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 42, 1387–1397 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Dempsey, E. & Rabe, H. The use of cardiotonic drugs in neonates. Clin. Perinatol. 46, 273–290 (2019).

    Article  PubMed  Google Scholar 

  5. Weiss, S. L. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 46, 10–67 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwarz, C. E. & Dempsey, E. M. Management of neonatal hypotension and shock. Semin. Fetal Neonatal Med. 25, 101121 (2020).

    Article  PubMed  Google Scholar 

  7. Coquerel, D. et al. Apelin-13 in septic shock: effective in supporting hemodynamics in sheep but compromised by enzymatic breakdown in patients. Sci. Rep. 11, 22770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan, C. S. et al. Apelin antagonizes myocardial impairment in sepsis. J. Card. Fail. 16, 609–617 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Maguire, J. J., Kleinz, M. J., Pitkin, S. L. & Davenport, A. P. [Pyr1]Apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54, 598–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, N. A., Dupré, D. J. & Rainey, J. K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class a GPCR. Biochem. Cell Biol. 92, 431–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boulkeroua, C. et al. Apelin-13 regulates vasopressin-induced aquaporin-2 expression and trafficking in kidney collecting duct cells. Cell. Physiol. Biochem. 53, 687–700 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Coquerel, D. et al. The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit. Care 22, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weiss, J. L., Frederiksen, J. W. & Weisfeldt, M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J. Clin. Investig. 58, 751–760 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bosse, D. et al. Experimental validation of cardiac index measurement using transpulmonary thermodilution technique in neonatal total liquid ventilation. ASAIO J. 56, 557–562 (2010).

    Article  PubMed  Google Scholar 

  15. Sage, M. et al. Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome. PLoS One 13, e0191885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Argueta, E. E. & Paniagua, D. Thermodilution cardiac output: a concept over 250 years in the making. Cardiol. Rev. 27, 138–144 (2019).

    Article  PubMed  Google Scholar 

  17. Rittirsch, D., Huber-Lang, M. S., Flierl, M. A. & Ward, P. A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rehberg, S. et al. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit. Care Med. 38, 2016–2023 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Kato, T. et al. Development and characterization of a novel porcine model of neonatal sepsis. Shock 21, 329–335 (2004).

    Article  PubMed  Google Scholar 

  20. Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davis, A. L. et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit. Care Med. 45, 1061–1093 (2017).

    Article  PubMed  Google Scholar 

  22. Coquerel, D. et al. Elabela improves cardio-renal outcome in fatal experimental septic shock. Crit. Care Med. 45, e1139–e1148 (2017).

    Article  PubMed  Google Scholar 

  23. Sahinturk, S., Demirel, S., Ozyener, F. & Isbil, N. [Pyr1]Apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potassium channels. Gen. Physiol. Biophys. 40, 427–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Chagnon, F. et al. Apelin compared with dobutamine exerts cardioprotection and extends survival in a rat model of endotoxin-induced myocardial dysfunction. Crit. Care Med. 45, e391–e398 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Mughal, A., Sun, C. & O’Rourke, S. T. Apelin does not impair coronary artery relaxation mediated by nitric oxide-induced activation of Bk(Ca) channels. Front. Pharmacol. 12, 679005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded internally (CRC-CHUS, Projets de Recherche Structurants, 2019). It was also supported by the Canadian Institutes of Health Research (CIHR) – Project grants (376770, 389979, and 399567), and the Senior Investigator Award of the Faculty of Medicine (FMSS) (O.L.).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: E.S., D.C., C.N., N.S., J.-P.P., O.L., E.F.-P. Data acquisition: E.S., C.M., D.C., C.N., N.S., E.F.-P. Analysis and interpretation: E.S., D.C., J.P.-P., O.L., E.F.-P. Drafting the article: E.S., E.F.-P. Final approval: E.S., C.M., D.C., C.N., N.S., J.P.-P., O.L., E.F.-P.

Corresponding author

Correspondence to Étienne Fortin-Pellerin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simard, É., Morin, C., Coquerel, D. et al. Hemodynamic impacts of apelin-13 in a neonatal lamb model of septic peritonitis. Pediatr Res 94, 129–134 (2023). https://doi.org/10.1038/s41390-022-02407-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02407-y

Search

Quick links