
REVIEW ARTICLE OPEN

The mechanical phenotypic plasticity of melanoma cell: an
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Advanced cutaneous melanoma is the deadliest form of skin cancer and one of the most aggressive human cancers. Targeted
therapies (TT) against BRAF mutated melanoma and immune checkpoints blockade therapies (ICB) have been a breakthrough in
the treatment of metastatic melanoma. However, therapy-driven resistance remains a major hurdle in the clinical management of
the metastatic disease. Besides shaping the tumor microenvironment, current treatments impact transition states to promote
melanoma cell phenotypic plasticity and intratumor heterogeneity, which compromise treatment efficacy and clinical outcomes. In
this context, mesenchymal-like dedifferentiated melanoma cells exhibit a remarkable ability to autonomously assemble their own
extracellular matrix (ECM) and to biomechanically adapt in response to therapeutic insults, thereby fueling tumor relapse. Here, we
review recent studies that highlight mechanical phenotypic plasticity of melanoma cells as a hallmark of adaptive and non-genetic
resistance to treatment and emerging driver in cross-resistance to TT and ICB. We also discuss how targeting BRAF-mutant
dedifferentiated cells and ECM-based mechanotransduction pathways may overcome melanoma cross-resistance.
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MELANOMA CELL PLASTICITY: A KEY COMPONENT OF
THERAPY RESISTANCE
Cutaneous melanoma is an aggressive skin cancer with an
increasing incidence. Its prognosis is poor in advanced and
metastatic stages. Melanoma is a non-epithelial tumor that
originates from the malignant transformation of a melanocyte,
the cell responsible for pigmentation [1, 2]. The aggressiveness
of melanoma is mainly due to a remarkable plasticity of tumor
cells creating a significant intra-tumoral heterogeneity asso-
ciated with resistance to treatment and a high potential for
dissemination [3]. Melanoma cell plasticity drives tumor cells
diversity along a reversible phenotypic spectrum. This process
called phenotype switching involves transcriptional and epige-
netic reprogramming ranging from a differentiated melanocytic
and proliferative cell state to dedifferentiated mesenchymal-like
and neural crest stem-like cell (NCSC) phenotypes with
intermediate states [4–8]. The differentiated state displays high
levels of the melanocyte lineage-specific transcription factors
microphthalmia-associated transcription factor (MITF) and
SOX10. Conversely, dedifferentiated melanoma cells are not
very proliferative, but particularly invasive, and show low
expression of MITF and high expression of mesenchymal
[9, 10], invasive [11, 12], extracellular matrix (ECM) [13], and
resistance markers such as the receptor tyrosine kinase (RTK)
AXL [14]. The dynamic tendency to transition to a mesenchymal
phenotype, which can be driven by a variety of tumor
microenvironmental stresses including inflammation, nutrient
and oxygen deprivation, immune defense or therapies, conveys
melanoma cells survival and adaptive capabilities during tumor

development and treatment and underlies aggressive traits such
as drug resistance and metastatic competence [15–20].
The majority of cutaneous melanomas result from oncogenic

driver mutations that lead to constitutive activation of the
mitogen-activated protein kinases (MAPK) pathway, with muta-
tions of BRAF (B-rapidly accelerated fibrosarcoma, 40-50% of
cases), NRAS (neuroblastoma ras viral oncogene, 20-30% of cases),
or NF1 (neurofibromatosis type 1, 10-15% of cases) [21]. The
discovery that ∼50% of tumors are driven by BRAFV600 mutations
has led to the development of targeted therapies (TT) based on
selective inhibitor of mutant BRAF (vemurafenib, dabrafenib or
encorafenib), used clinically in combination with a MEK inhibitor
(cobimetinib, trametinib or binimetinib) for the treatment of
advanced metastatic melanoma [22–24]. For patients who do not
carry the BRAF mutation or who have relapsed after TT, other
therapeutic strategies exist consisting in the administration of
immune checkpoint blockade (ICB) agents such as anti-PD-1, anti-
PDL1, and anti-CTLA4 antibodies aimed at reactivating immune
responses against tumor cells [25, 26]. The use of TT and ICB has
markedly improved clinical outcome of patients. Yet, despite high
response rates to these therapies, the majority of patients do not
respond, and many escape these therapies [27].
Several mechanisms of primary, adaptive and acquired resis-

tance to oncogenic BRAF pathway inhibition have been described.
Most often, acquired resistance occurs through melanoma genetic
evolution leading to reactivation of the MAPK pathway resulting
from de novo mutations on components of this signaling cascade,
including secondary mutations in NRAS [28]. Non-genetic mechan-
isms of drug resistance have obtained increased attention in the
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last years and their importance for tumor cell adaptation to
therapies, drug tolerance and acquired resistance is now
recognized [29]. They are linked to tumor cell intrinsic plasticity
[30] and in melanoma, they are commonly associated with
transcriptional reprogramming and epigenetic changes leading to
the activation of alternative survival pathways through upregula-
tion of RTKs such as AXL, PDGFRβ, EGFR or NGFR in a subset of
dedifferentiated melanoma cells [3, 7, 14, 17, 31–33]. Upon drug
pressure, melanoma cells may adapt to therapy by switching from
proliferative to invasive MITFlow dedifferentiated melanoma
subpopulations, such as neural crest-like and mesenchymal
invasive cell states, that impart acquired resistance and tumor
relapse [34–36]. Importantly, dedifferentiation and upregulation of
genes involved in mesenchymal transition, ECM remodeling and
cytoskeletal reorganization has been linked to immune escape
and resistance to PD-1 blockade [33, 37–39], revealing possible
cross-resistance mechanisms between TT and ICB.
This review summarizes recent evidence underlining the

mechanical plasticity of dedifferentiated melanoma cells as a
major component of adaptive and non-genetic resistance to TT.
We also discuss the potential role of melanoma cell mechanical
properties in driving resistance to MAPK-targeted therapies and
immunotherapies and how targeting ECM-driven mechano-
transduction pathways may be employed to tackle melanoma
therapeutic resistance.

THE MATRIX REVOLUTION: TUMOR MICROENVIRONMENT
REMODELING IN MELANOMA RESPONSE TO TREATMENT
Tumors are more than cancer cells. Aside genetic alterations
intrinsic to tumor cells that drive malignant development, the role
of the tumor microenvironment (TME) in cancer progression and
therapeutic escape is largely recognized [40–43]. Within the
surrounding microenvironment, a dynamic dialog between cancer
and stromal cells promotes adaptive resistance to anti-cancer
treatment. Among the extrinsic cues that sustain this crosstalk are
the release of growth and inflammatory factors, chemical
conditions like hypoxia or low nutrients, and the deposition and
remodeling of an altered ECM [18, 44–46]. Solid tumors are
characterized by a stiffened ECM composed of cross-linked and
aligned collagen fibrils. There is increasing evidence that the
biophysical properties of tumor-associated ECM promote cell
transformation, influence tumor transition states and alter
angiogenesis to foster metastasis and compromise treatment
efficiency. Hence, ECM dysregulation is viewed as a hallmark of
cancer [47]. Tumor-associated fibrosis accompanied with
increased ECM deposition and stiffening and unchecked inflam-
matory signals is now widely accepted as a microenvironmental
condition promoting tumor aggressiveness in several types of
malignancies, such as breast and pancreatic cancers [48, 49].
Consistently, chronic fibrosis is a well-known risk factor for cancer
[50]. Therefore, the effectiveness of anti-cancer treatments
requires a thorough understanding of the mechanisms involved
in the complex interplay between ECM mechanics, cancer cells
and stromal cells. Preventing or reversing pathological ECM
remodeling and stiffening or disrupting the cellular response to
biomechanical signals is now viewed as a promising approach to
enhance response to cancer therapeutics.
Over the past decade, the ECM in the tumor microenvironment

has been shown to play a key role in the progression and
acquisition of therapeutic resistance in melanoma [51, 52].
Although TT and ICB have improved overall survival in patients
with metastatic cutaneous melanoma [27], therapeutic resistance,
which involves both tumor cell intrinsic mechanisms and extrinsic
cues from the tumor microenvironment, constitutes a major
hurdle in the successful treatment of melanoma. Previous studies
have revealed that blockade of oncogenic BRAF signaling alters
the tumor microenvironment acting both on melanoma-

associated fibroblasts (MAF) and melanoma cells to promote
therapy escape. First, activation of MAF in the tumor microenvir-
onment exposed to TT triggers the release of soluble pro-survival
factors, including hepatocyte growth factor (HGF), from local
fibroblasts, which underlie an innate mechanism of drug
resistance [42, 43]. The secretion by aged fibroblasts from the
melanoma microenvironment of the Wnt-antagonist, secreted
frizzled related protein 2 (sFRP2), also impairs tumor response to
MAPK-targeted therapies [53]. Another study showed that TT
induce complex tumor secretomes in drug-stressed melanoma
and human lung adenocarcinoma cells, promoting resistance and
tumor progression [54]. Furthermore, upon exposure to TT,
autocrine production of TGFβ by melanoma cells can activate
local fibroblasts into myofibroblasts to deposit fibronectin that
generates a resistance tumor niche, in which melanoma cell
adhesion to the fibronectin-enriched ECM amplifies pro-survival
signaling activated by HGF released from MAF [55]. The
fibronectin-enriched matrix that is produced following the
paradoxical stimulation of MAF by BRAF inhibitors also promotes
adhesion-dependent signaling through the integrin β1/FAK/SRC
axis, which allows melanoma cells to tolerate BRAF inhibition [56].
Importantly, fibrosis also entails inflammatory signals, which have
an important role themselves in promoting tumor progression [57]
and in shaping a drug-tolerant microenvironment [16, 18, 51, 58].
Together, these studies emphasize the complex interplay between
melanoma cells, immune cells, and activated fibroblasts in
mediating therapeutic escape.
On the other hand, the critical role of TT-exposed melanoma

cells in the pro-fibrotic rewiring of the tumor niche has recently
gained increased attention. In fact, the autonomous ability of
melanoma cells to produce and shape their own ECM is now
described as a major adaptation strategy in response to TT. BRAF
inhibition has been shown to increase the production of
fibronectin by PTEN-null melanoma cells and adhesion to β1
integrin, which in turn promotes drug resistance through AKT
signaling and MCL-1 expression [59]. BRAF inhibition also
increases type I collagen synthesis and deposition by melanoma
cells in vitro and in vivo, independently of TGFβ signaling [60].
These studies supported the first notion that melanoma residual
disease and the resistant niche may be sustained by ECM-derived
signals. They also indicated that cooperative remodeling of the
cellular microenvironment and the ECM by TT generates a host-
tumor niche, which protects melanoma cells from therapeutic
insults, paving the way for the development of combination
therapies targeting the tumor-derived ECM and the oncogenic
BRAF pathway to enhance treatment efficacy.

SENSING THE MICROENVIRONMENT: MECHANICAL FORCES
FOSTER THERAPY RESISTANCE
Therapeutic pressure is a major driver of phenotype plasticity, a
pivotal mechanism of non-genetic drug resistance in cancer
[29, 30]. In response to MAPK pathway inhibition, some melanoma
cells undergo transcriptional reprogramming towards a melano-
cytic lineage dedifferentiation cell state characterized by the
expression of receptor tyrosine kinases such as AXL, PDGFRβ or
NGFR [6, 14, 31, 34, 35]. Our recent studies revealed a novel
mechanism of adaptation to TT whereby melanoma cells establish
a positive mechanosignaling loop powered by autocrine remodel-
ing of a drug protective ECM [13, 51, 61]. This vicious feed-forward
mechanical loop confers resistance to TT. While the induction of
ECM production by TT on melanoma cells and MAF was previously
described, these studies shed light on the role of tumor mechanics
in drug adaptation and acquisition of TT-resistance. In vitro, BRAF
inhibitor (BRAFi)-resistant melanoma cells characterized by
dedifferentiated mesenchymal-like or NCSC-like phenotypes dis-
play a pronounced mechanosensitivity and elevated mechan-
osignaling when plated on rigid collagen substrates [62]. The
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biomechanical phenotype of these dedifferentiated resistant
subpopulations of melanoma cells is supported by an increased
nuclear translocation and transcriptional activity of YAP and MRTF
[62], two major mechanosensitive transcriptional co-activators
[13, 51, 62–65]. Consistent with a prominent role of YAP in
therapeutic response, elevated YAP expression is a biomarker of
poor response to TT in patients with BRAF-mutant tumors and
combined YAP and MAPK inhibition is synthetically lethal in BRAF-
and RAS-mutant tumor types including melanoma through
synergistic induction of apoptosis [66]. In this context, our studies
add a novel biomechanical dimension to previous reports
performed with cells growing on tissue culture plastic, which
illustrated the tumor cell intrinsic non-ECM-mediated activity of
YAP [66, 67] and MRTF [65]. However, it is worth noting that both
factors display extrinsic functions, including their role in cancer-
associated fibroblasts (CAF) [68, 69], that may also contribute to
treatment resistance.
Further functional analysis showed that poorly differentiated

BRAFi-resistant melanoma cells also display a CAF-like phenotype
characterized by the upregulation of typical myofibroblast and
pro-fibrotic markers, including α-SMA, caveolin 1, MLC2, TAGLN2,
FAPα and LOXL2 [13]. Consistently, they display CAF-associated
behavior such as generation of actomyosin-dependent mechan-
ical forces and the ability to produce a type I collagen network
characterized by aligned fibers, a feature that is typical of
activated fibroblasts [13]. This mechanical cell plasticity and
myofibroblast/CAF-like activities are also observed during adap-
tive response to TT (Fig. 1). In contrast, more differentiated BRAFi-
resistant melanoma cells, are incompetent to display such CAF-like
behavior. Importantly, assembly of an organized ECM is respon-
sible for therapy escape, leading to de novo acquisition of
resistance. Indeed, treatment-naïve melanoma cells plated on ECM
autonomously produced and assembled by dedifferentiated
resistant or TT-exposed melanoma cells are protected from the
anti-proliferative effect elicited by oncogenic BRAF inhibition [13].
The described ECM-mediated drug protection is mediated by YAP
and MRTF activities, as revealed by the observation that depletion
of these two transcriptional co-factors prevented drug resistance
and implemented TT efficacy. Interestingly, a study showed that

RAC1P29S, a common mutation in human cutaneous melanoma,
drives BRAFi resistance through an SRF/MRTF program, which
suppresses melanocytic differentiation, induces a mesenchymal-
like phenotype and increases survival and resistance to BRAF
inhibitor [70]. An ECM gene expression signature was highly
enriched in RAC1P29S tumors compared with RAC1WT tumors [70],
suggesting that an MRTF-dependent biomechanical phenotype
could also occur in RAC1P29S tumors acquiring resistance to TT.
The biomechanical crosstalk between the tumorigenic ECM and

cancer cells may have relevant clinical implications. Indeed, the de
novo acquisition of a CAF-like phenotype observed in vitro is also
demonstrated in vivo using cell-derived xenografts (CDX) and
patient-derived xenografts (PDX) models. BRAF inhibition pro-
motes cancer cell-autonomous mechanisms of ECM production
and pro-fibrotic features in these xenograft models of melanoma
therapeutic responses associated with ECM reprogramming,
accumulation of collagen fibers and tumor stiffening in TT-
treated mice [13] (Fig. 1). Consistently, disruption of the
mechanical crosstalk between the stiff collagen network and
melanoma cells by co-administration of TT and the YAP inhibitor
verteporfin prevents the fibrotic-like response, enhances TT
efficacy and delays the onset of resistance [13]. The notion that
the crosstalk between tumor cells and the collagen network is an
important element of melanoma resistance to TT is further
supported by another study showing upregulated expression of
the metalloproteinase and collagenase MT1-MMP in BRAFi-
resistant melanoma cells associated with increased β1 integrin/
FAK signaling [71]. Targeting this ECM-mediated resistance
mechanism using a MT1-MMP inhibitor restored sensitivity to
BRAF inhibition in resistant melanoma cells [71]. On the other
hand, adhesion of BRAF mutant melanoma cells to ECM generated
from MAF confers resistance to TT via the tyrosine kinase
receptors for collagens DDR1 and DDR2 and activation of a NIK/
NFkB2 survival pathway [72]. In melanoma xenografts, targeting
DDR by Imatinib counteracts drug-induced collagen remodeling,
induces tumor cell death, delays tumor relapse, and increases
survival [72].
Mechanical reprogramming of melanoma cells in response to TT

does not only play a role in acquired resistance but it also

Fig. 1 Mechanical phenotypic plasticity in melanoma therapy resistance. Upon treatment with the BRAFi/MEKi combination of targeted
therapies (TT), and after an initial response phase, BRAF mutant melanoma cells undergo a series of phenotypic changes during a phase of
therapy adaptation, which eventually leads to the acquisition of characteristics favoring cross-resistance to TT and immune checkpoint
blockade (ICB) (e.g. anti-PD-1). RTKs receptor tyrosine kinases, ECM extracellular matrix, MHC major histocompatibility complex, TCR T cell
antigen receptor.
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participates in the early and late adaptation of cancer cells to drug
treatment. In line with this notion, we recently uncovered that the
mechanical phenotypic plasticity of dedifferentiated melanoma
cells exposed to TT relied on the activity of a pro-fibrotic cluster of
microRNAs miR-143/-145 [61]. Blockade of the miR-143/-145
cluster prevented the phenotypic transition towards a drug
resistant and dedifferentiated invasive cell state. In melanoma
cells, we evidenced that the miR-143/-145 cluster targets the
actin-bundling protein Fascin 1, which modulates the actin
cytoskeleton-ECM crosstalk and mechanopathways through focal
adhesion dynamics [61]. In addition, we found that the multi-
kinase inhibitor and anti-fibrotic drug nintedanib prevents ECM
remodeling and tumor relapse in a syngeneic melanoma model
treated with TT and impairs the upregulation of miR-143/-145 in
melanoma cells, in part through its inhibitory action on PDGFRβ,
which is overexpressed on dedifferentiated melanoma cells. This
further supports the concept that targeting the pro-fibrotic
rewiring of tumor cells should be considered as a salvage therapy
in melanoma [61].
Overall, these studies identify the biomechanical phenotype as

a targetable vulnerability of BRAF-mutated melanoma exposed to
MAPK therapeutics, and reveal that preventing the pro-fibrotic
stromal reaction in response to TT is a viable therapeutic option to
overcome non-genetic adaptive drug resistance.

TARGETING MECHANOPATHWAYS TO OVERCOME
MELANOMA CROSS-RESISTANCE TO TARGETED THERAPY AND
IMMUNOTHERAPY
The pro-fibrotic stroma recently characterized in BRAF-mutant
melanoma treated with TT is the hallmark of other solid
malignancies, and in addition to promote tumor initiation,
metastatic dissemination and drug resistance, it has been
described to be responsible for immune evasion [50, 73]. A
general example is the fibrotic state of desmoplastic tumors,
which leads to immunosuppression through several mechanisms
[74]. The notion that aberrant organization or stiffening of the
ECM may impede T cell migration and infiltration in the tumor has
also recently emerged. FAK signaling in pancreatic ductal
adenocarcinoma is associated with desmoplasia and impaired
cytotoxic T lymphocytes infiltration [75], while the CXCR4/CXCL12
axis triggers a similar effect in breast metastasis [76]. Moreover,
several studies point out that several features of fibrotic tumors,
such as hypoxia and the presence of tumor-associated macro-
phages, impede T cell infiltration [77, 78]. Consequently, normal-
ization of the tumorigenic ECM has been shown to reverse
immune exclusion and improve ICB outcomes in preclinical mouse
cancer models. One of the most efficient anti-fibrotic strategies so
far developed to implement the efficacy of immune checkpoint
inhibitors is targeting TGFβ signaling [79, 80]. However, the
pleiotropic effects of TGFβ make it challenging to exploit this
therapeutic option in the clinic. A recent study deepens the notion
of tumor-associated fibrosis as a negative regulator of anti-tumor
immunity and ICB response [81]. Using several preclinical mouse
tumor models with heterogeneous stroma, the authors show that
ECM remodeling and stiffening alter intra-tumoral T cell migration.
Conversely, normalization of tumorigenic ECM and collagen
crosslinking through the inhibition of lysyl oxidase (LOX) reduced
ECM deposition and stiffness, which enhanced T cell migration
and increased the efficacy of anti-PD-1 therapy [81]. Recent
observations in the non-BRAF-mutated B16-F10 melanoma model
indicate that inhibition of the DDR2 collagen receptor [82] or CAF-
mediated fibrosis by nintedanib [83] improved the antitumor
activity of ICB, reinforcing the idea that targeting ECM remodeling
is a promising therapeutic approach to enhance immunotherapies
in cancer.
The contribution of the fibrotic-like phenotype and biomecha-

nical plasticity to immune evasion has critical clinical implications

for other cancers currently treated with ICB, including melanoma
(Fig. 1). Indeed, in TT-treated patients with BRAF-mutant
melanoma, it has been shown that the acquisition of a
dedifferentiated cell state characterized by the expression of
mesenchymal genes, and genes involved in cell adhesion and
migration, ECM remodeling and wound healing is not only typical
of resistance to TT but also of ICB resistance [6, 33, 39, 84]. In
melanoma patients, the dedifferentiated subpopulation with high
expression of the NCSC-associated receptor NGFR is associated
with immune exclusion and resistance to anti-PD-1 therapy [85].
Remarkably, the NCSC-like cellular state in BRAF-mutated mela-
noma has also been associated with the development of non-
genetic resistance to MAPK-targeted therapies in a NGFR/FAK/
AKT-dependent manner [35, 36]. Conversely, resistance to PD-1
blockade has been linked to TGFβ signaling, which drives a
treatment resistant dedifferentiated cell state and transcriptional
downregulation of MHC class I in melanoma [86]. In this context, it
is interesting to note that lineage dedifferentiation of melanoma
cells that is induced by the proinflammatory cytokine TNFα also
causes the resistance to T-cell adoptive cell transfer therapies
[58, 87]. On the other hand, a T cell exhaustion phenotype
associated with YAP signature enrichment in the tumor cell
compartment is a typical feature of acquired TT resistance [33].
Therefore, the presence of subpopulations of dedifferentiated and
mechanically plastic melanoma cells may predict cross-resistance
to TT and ICB. However, a recent study showed that, in a
syngeneic mouse model, cross-resistance to ICB can also be driven
in TT-resistant melanoma by reactivation of the MAPK pathway,
which promotes an immunosuppressive microenvironment with
dysfunctional dendritic cells [88]. This study, and others
[35, 84, 89, 90] illustrate the complexity of acquired resistance
mechanisms to anti-cancer therapeutics. Nevertheless, consistent
with the concept of cross-resistance associated with the mechan-
ophenotype of melanoma cells, another study identified a key role
for cytoskeletal remodeling and the ROCK-actomyosin mechan-
osensing pathway in resistance to both TT and ICB [37]. Targeting
ROCK or myosin II causes death of TT and ICB-resistant melanoma
cells via lethal ROS induction and unresolved DNA damage. In
addition to these intrinsic actions, ROCK-myosin II blockade limits
the action of immunosuppressive myeloid and lymphoid cells,
thereby improving oncogenic BRAF oncogenic pathway inhibition
and anti-PD-1 efficacy [37]. Cytoskeletal plasticity should therefore
be considered an intrinsic vulnerability of therapy resistant
melanoma cells that can be exploited in the clinic.

PERSPECTIVES
Therapeutic resistance remains a major challenge in the clinical
management of metastatic melanoma. Besides shaping the tumor
microenvironment, cancer therapies impact tumor cell plasticity
and phenotypic diversity to promote drug tolerance and
compromise treatment efficacy [29, 30]. Recent studies have
highlighted melanoma cell phenotypic plasticity as a major
component of adaptive and non-genetic drug resistance, a
phenomenon that precedes irreversible genetic resistance [29].
Furthermore, unlocking phenotypic plasticity and non-mutational
epigenetic reprogramming has been recently added to the
hallmarks of cancer [73]. In this context, the autonomous ability
of mechanosensitive dedifferentiated CAF-like melanoma cells to
produce and remodel their own ECM is now emerging as a major
mean to evade MAPK-targeting therapies and immunotherapies
and a source of cross-resistance. Yet, the mechanism of
biomechanical adaptation of cancer cells to treatment, which
fuels tumor relapse, also reveals new vulnerabilities. Targeting the
mechanical phenotype displayed by aggressive dedifferentiated
mesenchymal-like BRAF-mutant melanoma cells and the fibrotic-
like features of melanoma tumor microenvironment in combina-
tion with current TT and ICB clearly opens promising therapeutic
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avenues. For example, repurposing compounds used in the
treatment of fibrotic diseases represents an attractive approach
to target the biomechanical adaptation of melanoma to treatment
[51]. This can be achieved by normalizing therapy-induced ECM
stiffening using therapeutics against TGFβ signaling [91], targeting
LOX and LOXL2 collagen cross-linkers [92] or using approved anti-
fibrotic drugs such as nintedanib [93], which has shown promising
activity in a preclinical model of BRAF mutant melanoma exposed
to TT [61]. Blocking ECM signaling by targeting integrins and their
associated FAK kinase [36, 75, 94], or DDR1/2 collagen receptors
[72, 82, 95], also has broad potential to improve anti-cancer
therapies. Finally, blocking the aberrant intracellular mechano-
transduction pathways that are promoted by ECM assembly and
stiffening, including RHO GTPase-mediated actomyosin cell
contractility [37] and transcriptional activity by the mechanosen-
sors YAP [13, 66, 96, 97] and MRTF [65, 70, 98], represents an
alternative approach to overcome therapeutic resistance. Target-
ing pathological and stromal cells mechanics emerges as a new
field of medical sciences (the so-called mechanomedecine) that
holds great potential to limit the progression of melanoma and
other cancers with major implications in the clinic (for detailed
reviews of the current mechanobiology-directed trials the reader
should refer to [46, 91]).
The coming years should see whether the implementation of

therapeutics targeting the mechanical dialog between cancer cells
and their microenvironment will help to overcome cross-
resistance and finally benefit patients relapsing on targeted and
immune therapies.

DATA AVAILABILITY
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database in accordance with the reference list.
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