Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoring BARX2 in OSCC reverses partial EMT and suppresses metastasis through miR-186-5p/miR-378a-3p-dependent SERPINE2 inhibition

Abstract

Tumor cells undergoing partial epithelial-mesenchymal transition (pEMT) are pivotal in local invasion and lymphatic metastasis of oral squamous cell carcinoma (OSCC), yet the mechanisms behind pEMT reversal remain poorly understood. In this study, the loss of BARX2 expression was revealed during the process of oral epithelial carcinogenesis and identified to activate the pEMT program, facilitate metastasis, and be associated with poor prognosis. Restoring BARX2 expression in OSCC cell lines effectively reversed tumor pEMT, evident in E/N-Cadherin switching, reduced cell invasion, proliferation, and stemness, and inhibited murine lung metastasis. BARX2 re-expression negatively correlated with several pEMT markers, notably SERPINE2, which was enriched in the invasive OSCC front, enhancing stemness and promoting metastasis, particularly in cervical lymph nodes. Furthermore, rescuing SERPINE2 impaired the inhibitory effect of BARX2 on the pEMT programs and reconstructed ECM through re-expression of MMP1. Mechanistically, we identified that BARX2 inhibited SERPINE2 through activating miR-186-5p and miR-378a-3p. These miRNAs, upregulated by BARX2, post-transcriptionally degraded SERPINE2 mRNA via targeting specific sequences. Blocking miR-186-5p and miR-378a-3p effectively abolished the negative regulatory effect of BARX2 on SERPINE2. Overall, our findings highlight BARX2 as a partial EMT-reverser in OSCC, providing fresh therapeutic prospects for restoring BARX2 signaling to inhibit invasion and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of BARX2 expression during OSCC development and its tissue-specificity in a pan-cancer dataset.
Fig. 2: BARX2 functions as a pEMT reversor of OSCC in vitro and in vivo.
Fig. 3: BARX2 is reversely associated with EMT signaling and SERPINE2 expression.
Fig. 4: SERPINE2 contributes to pEMT process of OSCC.
Fig. 5: Rescuing SERPINE2 reverts the inhibitory effect of BARX2 on pEMT process and extracellular matrix remodeling.
Fig. 6: BARX2 suppresses SERPINE2 through promoting the expression of miR-186-5p and miR-378a-3p.
Fig. 7: MiR-378a-3p and miR-186-5p act as tumor suppressors in OSCC.

Similar content being viewed by others

Data availability

The RNA-seq data of OSCC and ODE tissues supporting this article are accessible through NCBI’s gene Expression Omnibus accession number GSE107445. The RNA-seq data of CAL27-BARX2-ov and control cell line supporting this article are accessible through NCBI’s gene Expression Omnibus accession number PRJNA1025379.

References

  1. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol. 2009;45:301–8.

    Article  CAS  PubMed  Google Scholar 

  2. Albinger-Hegyi A, Stoeckli S, Schmid S, Storz M, Iotzova G, Probst-Hensch N, et al. Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). Int J cancer. 2010;126:2653–62.

    Article  CAS  PubMed  Google Scholar 

  3. Liao C, Wang Q, An J, Long Q, Wang H, Xiang M, et al. Partial EMT in Squamous Cell Carcinoma: A Snapshot. Int J Biol Sci. 2021;17:3036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kisoda S, Mouri Y, Kitamura N, Yamamoto T, Miyoshi K, Kudo Y. The role of partial-EMT in the progression of head and neck squamous cell carcinoma. J Oral Biosci. 2022;64:176–82.

    Article  CAS  PubMed  Google Scholar 

  5. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bouton M, Boulaftali Y, Richard B, Arocas V, Michel J, Jandrot-Perrus M. Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology. Blood. 2012;119:2452–7.

    Article  CAS  PubMed  Google Scholar 

  7. Wang K, Wang B, Xing A, Xu K, Li G, Yu Z. Prognostic significance of SERPINE2 in gastric cancer and its biological function in SGC7901 cells. J Cancer Res Clin Oncol. 2015;141:805–12.

    Article  CAS  PubMed  Google Scholar 

  8. Zou G, Lv Y, Kong M, Xiang B, Chen J. Upregulation of SERPINE2 Results in Poor Prognosis of Hepatoblastoma via Promoting Invasion Abilities. Dis Markers. 2022;2022:2283541.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin S, Kao S, Chang J, Liu Y, Yu E, Tseng S, et al. Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget. 2016;7:61355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mi Y, Zhao S, Zhang W, Zhang D, Weng J, Huang K, et al. Down-regulation of Barx2 predicts poor survival in colorectal cancer. Biochem Biophys Res Commun. 2016;478:67–73.

    Article  CAS  PubMed  Google Scholar 

  11. Nieto M, Huang R, Jackson R, Thiery J. EMT: 2016. Cell. 2016;166:21–45.

    Article  CAS  PubMed  Google Scholar 

  12. Fayard B, Bianchi F, Dey J, Moreno E, Djaffer S, Hynes NE, et al. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression. Cancer Res. 2009;69:5690–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wu QW. Serpine2, a potential novel target for combating melanoma metastasis. Am J Transl Res. 2016;8:1985–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones F, Kioussi C, Copertino D, Kallunki P, Holst B, Edelman G. Barx2, a new homeobox gene of the Bar class, is expressed in neural and craniofacial structures during development. Proc Natl Acad Sci USA. 1997;94:2632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meech R, Edelman D, Jones F, Makarenkova H. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development. 2005;132:2135–46.

    Article  CAS  PubMed  Google Scholar 

  16. Sellar GC, Li L, Watt KP, Nelkin BD, Rabiasz GJ, Stronach EA, et al. BARX2 induces cadherin 6 expression and is a functional suppressor of ovarian cancer progression. Cancer Res. 2001;61:6977–81.

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Zhang J, Huang L, He L, Liao Y, Lai Y, et al. Low expression of BARX2 in human primary hepatocellular carcinoma correlates with metastasis and predicts poor prognosis. Hepatol Res. 2015;45:228–37.

    Article  CAS  PubMed  Google Scholar 

  18. Mi Y, Zhao S, Zhou C, Weng J, Li J, Wang Z, et al. Downregulation of homeobox gene Barx2 increases gastric cancer proliferation and metastasis and predicts poor patient outcomes. Oncotarget. 2016;7:60593–608.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie K, Feng J, Fan D, Wang S, Luo J, Ren Z, et al. BARX2/FOXA1/HK2 axis promotes lung adenocarcinoma progression and energy metabolism reprogramming. Transl Lung Cancer Res. 2022;11:1405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu S, Yang Y, Yang H, Peng L, Wu Z, Sun L, et al. Pancancer analysis of oncogenic BARX2 identifying its prognostic value and immunological function in liver hepatocellular carcinoma. Sci Rep. 2023;13:7560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol cell Biol. 2020;21:341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Colangelo T, Carbone A, Mazzarelli F, Cuttano R, Dama E, Nittoli T, et al. Loss of circadian gene Timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism. Cell Death Differ. 2022;29:1552–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7:51–63.

    Article  CAS  PubMed  Google Scholar 

  24. Di Leo L, Bodemeyer V, Bosisio FM, Claps G, Carretta M, Rizza S, et al. Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun. 2021;12:2550.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang D, Zhang L, Hu A, Wang Y, Liu Y, Yang J, et al. Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance. Protein cell. 2021;12:107–27.

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Zhang M, Zhang W, Li Y, Zhu J, Zhang X, et al. Downregulation of BarH-like homeobox 2 promotes cell proliferation, migration and aerobic glycolysis through Wnt/β-catenin signaling, and predicts a poor prognosis in non-small cell lung carcinoma. Thorac Cancer. 2018;9:390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen S, Lin X, He R, Zhang W, Kang M, Xu R. PHLDA3 activated by BARX2 transcription, suppresses the malignant development of esophageal squamous cell carcinoma by downregulating PI3K/AKT levels. Exp Cell Res. 2023;426:113567.

    Article  CAS  PubMed  Google Scholar 

  28. Lu Z, Peng H, Li R, Xu X, Peng J. BarH-like homeobox 2 represses the transcription of keratin 16 and affects Ras signaling pathway to suppress nasopharyngeal carcinoma progression. Bioengineered. 2022;13:3122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langer EM, Kendsersky ND, Daniel CJ, Kuziel GM, Pelz C, Murphy KM, et al. ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene. 2018;37:1005–19.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Luo A, Huang F, Gong T, Liu Z. SERPINE2 promotes esophageal squamous cell carcinoma metastasis by activating BMP4. Cancer Lett. 2020;469:390–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chen WJ, Dong KQ, Pan XW, Gan SS, Xu D, Chen JX, et al. Single-cell RNA-seq integrated with multi-omics reveals SERPINE2 as a target for metastasis in advanced renal cell carcinoma. Cell Death Dis. 2023;14:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pagliara V, Adornetto A, Mammì M, Masullo M, Sarnataro D, Pietropaolo C, et al. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2. Biochim Biophys Acta. 2014;1843:2631–44.

    Article  CAS  PubMed  Google Scholar 

  33. Tang T, Zhu Q, Li X, Zhu G, Deng S, Wang Y, et al. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. 2019;10:649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li X, Wu X, Chen H, Liu Z, He H, Wang L. LHX2 Enhances the Malignant Phenotype of Esophageal Squamous Cell Carcinoma by Upregulating the Expression of SERPINE2. Genes. 2022;13:1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer. 2019;18:163.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li YB, Wu Q, Liu J, Fan YZ, Yu KF, Cai Y. miR‑199a‑3p is involved in the pathogenesis and progression of diabetic neuropathy through downregulation of SerpinE2. Mol Med Rep. 2017;16:2417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong P, Xiong Y, Watari H, Hanley SJ, Konno Y, Ihira K, et al. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J Exp Clin cancer Res. 2016;35:132.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.

    Article  CAS  PubMed  Google Scholar 

  39. Chen M, Zhang J. miR-186-5p inhibits the progression of oral squamous cell carcinoma by targeting ITGA6 to impair the activity of the PI3K/AKT pathway. J Oral Pathol Med. 2022;51:322–31.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Hu S, Zhang H, Zhang C, Lian Q, Jiao Y, et al. MiRNA-186-5p Exerts an Anticancer Role in Breast Cancer by Downregulating CXCL13. J Healthc Eng. 2022;2022:4891889.

    PubMed  PubMed Central  Google Scholar 

  41. Li Y, Zhou T, Cheng X, Li D, Zhao M, Zheng WV. microRNA-378a-3p regulates the progression of hepatocellular carcinoma by regulating PD-L1 and STAT3. Bioengineered. 2022;13:4730–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu X, Li Y, Liu G, Li K, Chen P, Gao Y, et al. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med. 2022;19:1662–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T, et al. Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis. 2019;10:514.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu H, Zhang Q, Song Y, Hao Y, Cui Y, Zhang X, et al. Long non-coding RNA SLC2A1-AS1 induced by GLI3 promotes aerobic glycolysis and progression in esophageal squamous cell carcinoma by sponging miR-378a-3p to enhance Glut1 expression. J Exp Clin cancer Res. 2021;40:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta. 2022;1:e36.

    Article  Google Scholar 

  46. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinforma. 2014;15:293.

    Article  Google Scholar 

  47. Zheng X, Sun Y, Li Y, Ma J, Lv Y, Hu Y, et al. A Novel Tongue Squamous Cell Carcinoma Cell Line Escapes from Immune Recognition due to Genetic Alterations in HLA Class I Complex. Cells. 2022;12:35.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatica. 2010;26:139–40.

    Article  CAS  Google Scholar 

  49. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen X, et al. MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis. 2018;7:79.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–54.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the technical group of the Department of Oral Pathology, Wuhan University, for their kindness support.

Funding

This research was supported by the National Natural Science Foundation of China 82273201 and 81972552, Natural Science Foundation of Hubei Province 2022CFB771, and the Fundamental Research Funds for the Central Universities 2042023kf0148.

Author information

Authors and Affiliations

Authors

Contributions

Study designation and Manuscript review: JL Zhang; Data acquisition and manuscript preparation: YN Sun, JC Pan and YW Li; Quality control of data and algorithms: YN Sun and YY Hu; Data analysis and interpretation: YW Li, JY Ma; Statistical analysis and Animal Experiments: JC Pan, YY Zhang, ZY Jiang, and F Chen.

Corresponding author

Correspondence to Jiali Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This work had been approved by the Ethics Committee of School of Stomatology, Wuhan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Pan, J., Li, Y. et al. Restoring BARX2 in OSCC reverses partial EMT and suppresses metastasis through miR-186-5p/miR-378a-3p-dependent SERPINE2 inhibition. Oncogene (2024). https://doi.org/10.1038/s41388-024-03053-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03053-w

Search

Quick links