Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KLF5 regulates actin remodeling to enhance the metastasis of nasopharyngeal carcinoma

Abstract

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of KLF5 as a master TF in distant metastasis of NPC.
Fig. 2: KLF5 stimulates metastatic cascade of NPC cells in vitro and in vivo.
Fig. 3: KLF5-dependent actin remodeling and lamellipodia formation in NPC cells.
Fig. 4: KLF5 preferentially occupies distal regions enriched for enhancer marks.
Fig. 5: KLF5 occupies the ACTN4 enhancer to activate transcription.
Fig. 6: KLF5-ACTN4 axis enhances metastatic potential of NPC cells.
Fig. 7: ACTN4 colocalizes with dense actin to facilitate lamellipodia formation.
Fig. 8: Schematic of mechanism by which KLF5-ACTN4 axis augments lamellipodia formation and metastatic potential in NPC.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its Supplementary Information Files.

References

  1. Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell. 2023;186:1564–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Massagué J, Ganesh K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021;11:971–94.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020;20:107–24.

    Article  CAS  PubMed  Google Scholar 

  4. SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol. 2021;22:529–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185:1356–1372.e26.

    Article  CAS  PubMed  Google Scholar 

  6. Bera K, Kiepas A, Godet I, Li Y, Mehta P, Ifemembi B, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature. 2022;611:365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hakala M, Wioland H, Tolonen M, Kotila T, Jegou A, Romet-Lemonne G, et al. Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nat Cell Biol. 2021;23:147–59.

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol. 2022;24:1499–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reversat A, Gaertner F, Merrin J, Stopp J, Tasciyan S, Aguilera J, et al. Cellular locomotion using environmental topography. Nature. 2020;582:582–5.

    Article  CAS  PubMed  Google Scholar 

  10. Mehidi A, Kage F, Karatas Z, Cercy M, Schaks M, Polesskaya A, et al. Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat Cell Biol. 2021;23:1148–62.

    Article  CAS  PubMed  Google Scholar 

  11. De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town JP, Zager PJ, et al. Cell protrusions and contractions generate long-range membrane tension propagation. Cell. 2023;186:3049–61.e15.

    Article  PubMed  Google Scholar 

  12. Bisaria A, Hayer A, Garbett D, Cohen D, Meyer T. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science. 2020;368:1205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol. 2022;23:836–52.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou H, Poore B, Brown EE, Qian J, Xie B, Asimakidou E, et al. A neurodevelopmental epigenetic programme mediated by SMARCD3-DAB1-Reelin signalling is hijacked to promote medulloblastoma metastasis. Nat Cell Biol. 2023;25:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tetreault M-P, Yang Y, Katz JP. Krüppel-like factors in cancer. Nat Rev Cancer. 2013;13:701–13.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Lüttmann FF, Schoger E, Schöler HR, Zelarayán LC, Kim K-P, et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science. 2021;373:1537–40.

    Article  CAS  PubMed  Google Scholar 

  18. Blacher E, Tsai C, Litichevskiy L, Shipony Z, Iweka CA, Schneider KM, et al. Aging disrupts circadian gene regulation and function in macrophages. Nat Immunol. 2022;23:229–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022;21:9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol. 2023;90:29–44.

    Article  CAS  PubMed  Google Scholar 

  21. Liu P, Wang Z, Ou X, Wu P, Zhang Y, Wu S, et al. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol Cancer. 2022;21:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 2021;12:1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu Y, Chen S, Shao Y, Su Y, Li Q, Wu J, et al. KLF5 promotes tumor progression and parp inhibitor resistance in ovarian cancer. Adv Sci. 2023;10:e2304638.

    Article  Google Scholar 

  24. Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, et al. KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol. 2019;21:1179–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  26. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. International Agency for Research on Cancer, Lyon, France. 2020. https://gco.iarc.fr/today. Accessed 2 Aug 2023.

  27. Zhang Y, Chen L, Hu G-Q, Zhang N, Zhu X-D, Yang K-Y, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med. 2019;381:1124–35.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Pan J, Wang H, Zhao Y, Qu S, Chen N, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309). Cancer Cell. 2023;41:1061–1072.e4.

    Article  CAS  PubMed  Google Scholar 

  29. Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics. 2016;32:2233–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

    Article  CAS  PubMed  Google Scholar 

  31. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet. 2016;48:838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He P, Yang JW, Yang VW, Bialkowska AB. Krüppel-like Factor 5, increased in pancreatic ductal adenocarcinoma, promotes proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. Gastroenterology. 2018;154:1494–1508.e13.

    Article  CAS  PubMed  Google Scholar 

  33. Kim J, Wang C, de Sabando AR, Cole HL, Huang TJ, Yang J, et al. The novel small-molecule SR18662 efficiently inhibits the growth of colorectal cancer in vitro and in vivo. Mol Cancer Ther. 2019;18:1973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD, Winkler C, et al. Load adaptation of lamellipodial actin networks. Cell. 2017;171:188–200.e16.

    Article  CAS  PubMed  Google Scholar 

  35. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wang M-C, Chang Y-H, Wu C-C, Tyan Y-C, Chang H-C, Goan Y-G, et al. Alpha-actinin 4 is associated with cancer cell motility and is a potential biomarker in non-small cell lung cancer. J Thorac Oncol. 2015;10:286–301.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Z, Zhou J-K, Wang K, Chen H, Qin S, Liu J, et al. PDLIM1 inhibits tumor metastasis through activating hippo signaling in hepatocellular carcinoma. Hepatology. 2020;71:1643–59.

    Article  CAS  PubMed  Google Scholar 

  38. Feng D, Kumar M, Muntel J, Gurley SB, Birrane G, Stillman IE, et al. Phosphorylation of ACTN4 leads to podocyte vulnerability and proteinuric glomerulosclerosis. J Am Soc Nephrol. 2020;31:1479–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15:1829–52.

    Article  CAS  PubMed  Google Scholar 

  41. DelRosso, Tycko N, Suzuki J, Andrews P, Aradhana C, Mukund A, et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature. 2023;616:365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim K, Jang I, Kim M, Choi J, Kim M-S, Lee B, et al. 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome. Nucleic Acids Res. 2021;49:D38–D46.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Q, Liu M, Zhang D, Lin B-B, Fu X, Zhang Z, et al. Nitazoxanide inhibits acetylated KLF5-induced bone metastasis by modulating KLF5 function in prostate cancer. BMC Med. 2023;21:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei Z, Gao F, Kim S, Yang H, Lyu J, An W, et al. Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell. 2013;13:36–47.

    Article  CAS  PubMed  Google Scholar 

  45. Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S, et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell. 2017;168:442–59.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michael AK, Thomä NH. Reading the chromatinized genome. Cell. 2021;184:3599–611.

    Article  CAS  PubMed  Google Scholar 

  47. Larson ED, Marsh AJ, Harrison MM. Pioneering the developmental frontier. Mol Cell. 2021;81:1640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang J, Chan Y-S, Loh Y-H, Cai J, Tong G-Q, Lim C-A, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008;10:353–60.

    Article  PubMed  Google Scholar 

  49. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012;151:994–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dos Santos M, Shah AM, Zhang Y, Bezprozvannaya S, Chen K, Xu L, et al. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun. 2023;14:4333.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Guo B, Aguilera-Jimenez E, Chu VS, Zhou J, Wu Z, et al. Chromatin looping shapes KLF5-dependent transcriptional programs in human epithelial cancers. Cancer Res. 2020;80:5464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang YY, Jiang Y, Li CQ, Zhang Y, Dakle P, Kaur H, et al. TP63, SOX2, and KLF5 establish a core regulatory circuitry that controls epigenetic and transcription patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology. 2020;159:1311–27.

    Article  CAS  PubMed  Google Scholar 

  53. Yolland L, Burki M, Marcotti S, Luchici A, Kenny FN, Davis JR, et al. Persistent and polarized global actin flow is essential for directionality during cell migration. Nat Cell Biol. 2019;21:1370–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;20:437–55.

    Article  CAS  PubMed  Google Scholar 

  55. Winick-Ng W, Kukalev A, Harabula I, Zea-Redondo L, Szabó D, Meijer M, et al. Cell-type specialization is encoded by specific chromatin topologies. Nature. 2021;599:684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goel VY, Huseyin MK, Hansen AS. Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat Genet. 2023;55:1048–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer. 2022;22:157–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer. 2019;19:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, et al. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest. 2017;127:2815–28.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (92259202, 82273401, 82103579, 82102875), the Guangdong Basic and Applied Basic Research Foundation (2019A1515011863, 2019A1515012045, 2023B1515020014), the Health & Medical Collaborative Innovation Project of Guangzhou City, China (202201011261), the Special Support Program of Sun Yat-sen University Cancer Center (16zxtzlc06), the Cancer Innovative Research Program of Sun Yat-sen University Cancer Center (CIRP-SYSUCC-0010), the Young Talents Program of Sun Yat-sen University Cancer Center (YTP-SYSUCC-0069) and the Sanming Project of Medicine in Shenzhen(SZSM202211017).

Author information

Authors and Affiliations

Authors

Contributions

GZ and DW designed and supervised the study. GZ, DW and ZY conducted the literature search. ZY, YP, YW and PY performed the experiments. JL, ZY and XX performed the bioinformatic analysis. ZH developed the animal models. TQ, ZY, PS and YP extracted and analyzed data. GZ, ZY, DW and YS were responsible for interpreting results. ZY, YW, DW and GZ contributed to the figures and tables. ZY and DW wrote the manuscript.

Corresponding authors

Correspondence to Jiawei Lv, Denghui Wei or Guan-Qun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Peng, Y., Wang, Y. et al. KLF5 regulates actin remodeling to enhance the metastasis of nasopharyngeal carcinoma. Oncogene (2024). https://doi.org/10.1038/s41388-024-03033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03033-0

Search

Quick links