Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LINC00460-FUS-MYC feedback loop drives breast cancer metastasis and doxorubicin resistance

Abstract

Therapeutic resistance and metastasis largely contribute to mortality from breast cancer and therefore understanding the underlying mechanisms of such remains an urgent challenge. By cross-analysis of TCGA and GEO databases, LINC00460 was identified as an oncogenic long non-coding RNA, highly expressed in Doxorubicin resistant breast cancer. LINC00460 was further demonstrated to promote stem cell-like and epithelial-mesenchymal transition (EMT) characteristics in breast cancer cells. LINC00460 interacts with FUS protein with consequent enhanced stabilization, which further promotes MYC mRNA maturation. LINC00460 expression was transcriptionally enhanced by c-MYC protein, forming a positive feedback loop to promote metastasis and Doxorubicin resistance. LINC00460 depletion in Doxorubicin-resistant breast cancer cells restored sensitivity to Doxorubicin and increased the efficacy of c-MYC inhibitor therapy. Collectively, these findings implicate LINC00460 as a promising prognostic biomarker and potential therapeutic target to overcome Doxorubicin resistance in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated expression of LINC00460 in Doxorubicin-resistant BC is associated with poor prognosis.
Fig. 2: LINC00460 regulates CSC-like characteristics and promotes Doxorubicin resistance in breast cancer cells.
Fig. 3: LINC00460 regulates EMT and promotes metastasis.
Fig. 4: LINC00460 interacts with and stabilizes FUS.
Fig. 5: LINC00460 depends on FUS to promote Doxorubicin resistance and metastasis.
Fig. 6: LINC00460 tethered FUS regulates MYC mRNA maturation.
Fig. 7: Positive feedback loop between MYC and LINC00460 contributes to Doxorubicin resistance in breast cancer.

Similar content being viewed by others

References

  1. Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, et al. A Nuclear Long Non-Coding RNA LINC00618 Accelerates Ferroptosis in a Manner Dependent upon Apoptosis. Mol Ther. 2021;29:263–74.

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Xu Y, Yao B, Sui T, Lai L, Li Z. A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis. 2020;11:613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali MM, Di Marco M, Mahale S, Jachimowicz D, Kosalai ST, Reischl S, et al. LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression. Oncogene. 2021;40:2463–78.

    Article  CAS  PubMed  Google Scholar 

  6. Friche E, Skovsgaard T, Nissen NI. Anthracycline resistance. Acta Oncol. 1989;28:877–81.

    Article  CAS  PubMed  Google Scholar 

  7. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 2008;34:378–90.

    Article  CAS  PubMed  Google Scholar 

  8. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

    Article  CAS  PubMed  Google Scholar 

  10. Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179:1033–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  12. Quinn HM, Vogel R, Popp O, Mertins P, Lan L, Messerschmidt C, et al. YAP and beta-Catenin Cooperate to Drive Oncogenesis in Basal Breast Cancer. Cancer Res. 2021;81:2116–27.

    Article  CAS  PubMed  Google Scholar 

  13. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Xie P, Hao N, Zhang M, Liu Y, Liu P, et al. HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/beta-catenin pathway activation. Proc Natl Acad Sci USA. 2021;118:e2109144118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  18. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 2011;8:149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020;30:764–76.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589:448–55.

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Jin H, Wang N, Fan S, Wang Y, Zhang Y, et al. Gas6/Axl Axis Contributes to Chemoresistance and Metastasis in Breast Cancer through Akt/GSK-3beta/beta-catenin Signaling. Theranostics. 2016;6:1205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35:3201–8.

    Article  PubMed  Google Scholar 

  23. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting Cancer Stemness in the Clinic: From Hype to Hope. Cell Stem Cell. 2019;24:25–40.

    Article  CAS  PubMed  Google Scholar 

  24. Todaro M, Turdo A, Bartucci M, Iovino F, Dattilo R, Biffoni M, et al. Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy. Cancer Res. 2013;73:6393–400.

    Article  CAS  PubMed  Google Scholar 

  25. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–354.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elguindy MM, Mendell JT. NORAD-induced Pumilio phase separation is required for genome stability. Nature. 2021;595:303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu L, Li T, Song G, He Q, Yin Y, Lu JY, et al. Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Res. 2019;47:2244–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan AY, Riley TR, Coady T, Bussemaker HJ, Manley JL. TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proc Natl Acad Sci USA. 2012;109:6030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 2015;43:5130–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung H, Lee D, Lee J, Park D, Kim YJ, Park WY, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47:1242–8.

    Article  CAS  PubMed  Google Scholar 

  31. Monteuuis G, Schmitz U, Petrova V, Kearney PS, Rasko JEJ. Holding on to Junk Bonds: Intron Retention in Cancer and Therapy. Cancer Res. 2021;81:779–89.

    Article  CAS  PubMed  Google Scholar 

  32. Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res. 2019;47:11497–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Popli P, Richters MM, Chadchan SB, Kim TH, Tycksen E, Griffith O, et al. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation. Cell Death Dis. 2020;11:842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi Y, Liu W, Zheng H, Li Z, Shi X, Cai S, et al. Imaging of pre-mRNA splicing in living subjects using a genetically encoded luciferase reporter. Biomed Opt Express. 2018;9:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiang X, Yuan D, Liu Y, Li J, Wen Q, Kong P, et al. PIM1 overexpression in T-cell lymphomas protects tumor cells from apoptosis and confers doxorubicin resistance by upregulating c-myc expression. Acta Biochim Biophys Sin. 2018;50:800–6.

    Article  CAS  PubMed  Google Scholar 

  36. Tao L, Shu-Ling W, Jing-Bo H, Ying Z, Rong H, Xiang-Qun L, et al. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelialmesenchymal transition (EMT) through targeting c-Myc. Biomed Pharmacother. 2020;125:109962.

    Article  CAS  PubMed  Google Scholar 

  37. Broxterman HJ, Gotink KJ, Verheul HM. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat. 2009;12:114–26.

    Article  CAS  PubMed  Google Scholar 

  38. Jones SE, Durie BGM, Salmon SE. Combination chemotherapy with adriamycin and cyclophosphamide for advanced breast cancer. Cancer. 1975;36:90–7.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang CL, Zhu KP, Ma XL. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 2017;396:66–75.

    Article  CAS  PubMed  Google Scholar 

  40. Shen Y, Liu S, Fan J, Jin Y, Tian B, Zheng X, et al. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep. 2017;18:536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai Q, Wang S, Jin L, Weng M, Zhou D, Wang J, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019;18:82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, et al. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett. 2021;508:104–14.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Y, Yang L, Chong QY, Yan H, Zhang W, Qian W, et al. Long noncoding RNA Linc00460 promotes breast cancer progression by regulating the miR-489-5p/FGF7/AKT axis. Cancer Manag Res. 2019;11:5983–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou P, Meng S, Li M, Lin T, Chu S, Li Z, et al. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 2021;40:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pereira CB, Leal MF, de Souza CR, Montenegro RC, Rey JA, Carvalho AA, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS One. 2013;8:e60576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu J, Chen Y, Olopade OI. MYC and Breast Cancer. Genes Cancer. 2010;1:629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akita H, Marquardt JU, Durkin ME, Kitade M, Seo D, Conner EA, et al. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res. 2014;74:5903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 2018;37:173.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Portz B, Lee BL, Shorter J. FUS and TDP-43 Phases in Health and Disease. Trends Biochem Sci. 2021;46:550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, et al. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell. 2018;173:693–705.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022;21:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19:23–36.

    Article  CAS  PubMed  Google Scholar 

  55. Samanta D, Semenza GL. In Vitro Assays of Breast Cancer Stem Cells. Methods Mol Biol. 2018;1742:237–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Dr. Li Bai (USTC, China) for providing HEK-293T cell lines, Dr. Suling Liu (Fudan University, China) for providing SUM149 cell lines, Dr. Ping Gao (SCUT, China) for providing pCDH-c-MYC plasmid, Dr. Huafeng Zhang for providing pSin-puro vector, Dr. Rui Sun for providing lentivirus production plasmids, Dr. Yide Mei for providing HA-ub plasmid, and Dr. Liting Qian for providing pHBLV-ZsGreen plasmid, respectively. This work was supported by the National Natural Science Foundation of China (82173254, 82373152, 82172618, 82103531), the Fundamental Research Funds for the Central Universities (YD9100002010), the Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY2022020) and Shenzhen Bay Scholars Program; the Shenzhen Key Laboratory of Innovative Oncotherapeutics (ZDSYS20200820165400003) (Shenzhen Science and Technology Innovation Commission), China; Shenzhen Development and Reform Commission Subject Construction Project ([2017]1434), China; Overseas Research Cooperation Project (HW2020008) (Tsinghua Shenzhen International Graduate School), China; Universities Stable Funding Key Projects (WDZC20200821150704001); The Shenzhen Bay Laboratory, Oncotherapeutics (21310031), China; TBSI Faculty Start-up Funds, China; the National Natural Science Foundation of China (Grant No. 82172618).

Author information

Authors and Affiliations

Authors

Contributions

LY, PEL and TZ conceived the project and designed the experiments. LY, MW, YW, JW, and YZ collected most of the data. LY, PEL and TZ analyzed the results. ZW, Q,G and XH provided breast cancer patient samples, LY, MW, VP, PEL, and TZ wrote and revised the manuscript.

Corresponding authors

Correspondence to Peter E. Lobie or Tao Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, M., Wang, Y. et al. LINC00460-FUS-MYC feedback loop drives breast cancer metastasis and doxorubicin resistance. Oncogene 43, 1249–1262 (2024). https://doi.org/10.1038/s41388-024-02972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02972-y

Search

Quick links