Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Epigenetics behind tumor immunology: a mini review

Abstract

Immunogenic- and immune-therapies have become hot spots in the treatment of cancer. Although promising, these strategies are frequently associated with innate or acquired resistance, calling for combined targeting of immune inhibitory signals. Epigenetic therapy is attracting considerable attention as a combination partner for immune-based therapies due to its role in molding the state and fate of cancer and immune cells in the tumor microenvironment. Here, we describe epigenetic dysregulations in cancer, with a particular focus on those related to innate immune signaling and Type I interferons, and emphasize opportunities and current efforts to translate this knowledge into treatment regimens with improved clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Intriguing epigenetic strategies to boost immunotherapy efficacy.

References

  1. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9.

    Article  CAS  PubMed  Google Scholar 

  2. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity. 2014;41:843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci. 2022;79:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacquelot N, Yamazaki T, Roberti MP, Duong CPM, Andrews MC, Verlingue L, et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 2019;29:846–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. Biol (Basel). 2021;10:856.

    CAS  Google Scholar 

  7. Reich NC. Too much of a good thing: Detrimental effects of interferon. Semin Immunol. 2019;43:101282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010;207:2053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111.

    Article  CAS  PubMed  Google Scholar 

  10. Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature. 2021;595:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Musella M, Guarracino A, Manduca N, Galassi C, Ruggiero E, Potenza A, et al. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol. 2022;23:1379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu J, Xu B, Ye D, Ren D, Wang S, Benci JL, et al. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. Nat Cancer. 2023;4:43–61.

    CAS  PubMed  Google Scholar 

  13. Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature. 2021;598:682–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Esteller M. Epigenetics in cancer. N. Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  15. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  16. Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17:75–90.

    Article  PubMed  Google Scholar 

  17. Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8:210.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galassi C, Musella M, Manduca N, Maccafeo E, Sistigu A. The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells. 2021;10:2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  21. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.

    Article  CAS  PubMed  Google Scholar 

  22. von Locquenghien M, Rozalen C, Celia-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. J Clin Invest. 2021;131:e143296.

    Article  Google Scholar 

  23. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell. 2015;162:974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell. 2015;162:961–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Griffiths DJ. Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2:REVIEWS1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudin CM, Thompson CB. Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes Cancer. 2001;30:64–71.

    Article  CAS  PubMed  Google Scholar 

  27. Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, et al. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep. 2020;10:3470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME, Topper MJ, et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci USA. 2017;114:E10981–E10990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buoncervello M, Romagnoli G, Buccarelli M, Fragale A, Toschi E, Parlato S, et al. IFN-alpha potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer. Oncotarget. 2016;7:26361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKepsilon/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 2022;21:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses. 2020;12:596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020;39:e104514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ford BR, Vignali PDA, Rittenhouse NL, Scharping NE, Peralta R, Lontos K, et al. Tumor microenvironmental signals reshape chromatin landscapes to limit the functional potential of exhausted T cells. Sci Immunol. 2022;7:eabj9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene. 2019;38:390–405.

    Article  CAS  PubMed  Google Scholar 

  35. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell. 2019;36:385–401.e388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimmerman SM, Nixon SJ, Chen PY, Raj L, Smith SR, Paolini RL, et al. Ezh2(Y641F) mutations co-operate with Stat3 to regulate MHC class I antigen processing and alter the tumor immune response in melanoma. Oncogene. 2022;41:4983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bugide S, Gupta R, Green MR, Wajapeyee N. EZH2 inhibits NK cell-mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner. Proc Natl Acad Sci USA. 2021;118:e2102718118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity. 2015;42:227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katsuyama E, Suarez-Fueyo A, Bradley SJ, Mizui M, Marin AV, Mulki L, et al. The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections. Cell Rep. 2020;30:112–123.e114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stairiker CJ, Thomas GD, Salek-Ardakani S. EZH2 as a Regulator of CD8+ T Cell Fate and Function. Front Immunol. 2020;11:593203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim HJ, Cantor H, Cosmopoulos K. Overcoming Immune Checkpoint Blockade Resistance via EZH2 Inhibition. Trends Immunol. 2020;41:948–63.

    Article  CAS  PubMed  Google Scholar 

  46. Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res. 2021;11:1803–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Collins PL, Kyle KE, Egawa T, Shinkai Y, Oltz EM. The histone methyltransferase SETDB1 represses endogenous and exogenous retroviruses in B lymphocytes. Proc Natl Acad Sci USA. 2015;112:8367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan D, Bao X, Hu M, Jiao M, Li F, Li CY. SETDB1 Restrains Endogenous Retrovirus Expression and Antitumor Immunity during Radiotherapy. Cancer Res. 2022;82:2748–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adoue V, Binet B, Malbec A, Fourquet J, Romagnoli P, van Meerwijk JPM, et al. The Histone Methyltransferase SETDB1 Controls T Helper Cell Lineage Integrity by Repressing Endogenous Retroviruses. Immunity. 2019;50:629–44.e628.

    Article  CAS  PubMed  Google Scholar 

  50. Johnson E, Salari K, Yang S. SETDB1: A perspective into immune cell function and cancer immunotherapy. Immunology. 2023;169:3–12.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Z, Feng L, Peng X, Ma T, Tong R, Zhong L. Role of histone methyltransferase SETDB1 in regulation of tumourigenesis and immune response. Front Pharm. 2022;13:1073713.

    Article  CAS  Google Scholar 

  52. Cuellar TL, Herzner AM, Zhang X, Goyal Y, Watanabe C, Friedman BA, et al. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J Cell Biol. 2017;216:3535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, et al. Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets. 2017;21:319–31.

    Article  CAS  PubMed  Google Scholar 

  54. Nachiyappan A, Gupta N, Taneja R. EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: emerging evidence and mechanisms. FEBS J. 2022;289:1329–51.

    Article  CAS  PubMed  Google Scholar 

  55. Hu L, Zang MD, Wang HX, Zhang BG, Wang ZQ, Fan ZY, et al. G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner. Cell Death Dis. 2018;9:278.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang T, Zhang P, Li W, Zhao T, Zhang Z, Chen S, et al. G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death Dis. 2017;8:e2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj ZB, Ohtani H, et al. Dual Inhibition of DNA and Histone Methyltransferases Increases Viral Mimicry in Ovarian Cancer Cells. Cancer Res. 2018;78:5754–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kelly GM, Al-Ejeh F, McCuaig R, Casciello F, Ahmad Kamal N, Ferguson B, et al. G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma. Clin Cancer Res. 2021;27:2624–35.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu D, Barry E, Sankin AI. Enhancing response to immunotherapy in urothelial carcinoma by targeted inhibition of the histone methyltransferase G9a pathway. Transl Androl Urol. 2019;8:S469–S471.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karakaidos P, Verigos J, Magklara A. LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel). 2019;11:1821.

    Article  CAS  PubMed  Google Scholar 

  61. Lee DY, Salahuddin T, Iqbal J. Lysine-Specific Demethylase 1 (LSD1)-Mediated Epigenetic Modification of Immunogenicity and Immunomodulatory Effects in Breast Cancers. Curr Oncol. 2023;30:2127–43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell. 2018;174:549–63.e519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Debo B, Li M, Shi Z, Sheng W, Shi Y. LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun. 2021;12:6831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu S, Wang X, Yang Y, Li Y, Wu S. LSD1 silencing contributes to enhanced efficacy of anti-CD47/PD-L1 immunotherapy in cervical cancer. Cell Death Dis. 2021;12:282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–87.

    Article  CAS  PubMed  Google Scholar 

  66. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nikbakht N, Tiago M, Erkes DA, Chervoneva I, Aplin AE. BET Inhibition Modifies Melanoma Infiltrating T Cells and Enhances Response to PD-L1 Blockade. J Invest Dermatol. 2019;139:1612–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ, et al. BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression. Cell Rep. 2016;16:2829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kong W, Dimitri A, Wang W, Jung IY, Ott CJ, Fasolino M, et al. BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. J Clin Invest. 2021;131:e145459.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Romine KA, MacPherson K, Cho HJ, Kosaka Y, Flynn PA, Byrd KH, et al. BET inhibitors rescue anti-PD1 resistance by enhancing TCF7 accessibility in leukemia-derived terminally exhausted CD8(+) T cells. Leukemia. 2023;37:580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhong M, Gao R, Zhao R, Huang Y, Chen C, Li K, et al. BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. Cell Death Dis. 2022;13:671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abruzzese MP, Bilotta MT, Fionda C, Zingoni A, Soriani A, Vulpis E, et al. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. J Hematol Oncol. 2016;9:134.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cribbs AP, Filippakopoulos P, Philpott M, Wells G, Penn H, Oerum H, et al. Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function. Front Immunol. 2021;12:626255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, et al. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer. 2019;7:277.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lai X, Stiff A, Duggan M, Wesolowski R, Carson WE 3rd, Friedman A. Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci USA. 2018;115:5534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang H, Liu G, Jin X, Song S, Chen S, Zhou P, et al. BET inhibitor JQ1 enhances anti-tumor immunity and synergizes with PD-1 blockade in CRC. J Cancer. 2022;13:2126–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MM is supported by the AIRC-FIRC fellowship n. 25558.

Author information

Authors and Affiliations

Authors

Contributions

AS conceived the review. AS and MM wrote the manuscript with constructive input from all authors. NM and EM prepared display items under the supervision of MM. All authors approved the final version of the article and figures.

Corresponding author

Correspondence to Antonella Sistigu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musella, M., Manduca, N., Maccafeo, E. et al. Epigenetics behind tumor immunology: a mini review. Oncogene 42, 2932–2938 (2023). https://doi.org/10.1038/s41388-023-02791-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02791-7

Search

Quick links