Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of α-klotho in human cancer: molecular and clinical aspects

Abstract

Klotho is a well-established longevity hormone. Its most prominent function is the regulation of phosphate homeostasis. However, klotho possesses multiple pleiotropic activities, including inhibition of major signaling pathways, reducing oxidative stress and suppressing inflammation. These activities are tightly associated with cancer, and klotho was discovered as a universal tumor suppressor. We review here novel molecular aspects of klotho activity in cancer, focusing on its structure–function relationships and clinical aspects regarding its expression, blood levels, clinical risk, and prognostic value in the clinical setting. In addition, the potential benefit of klotho treatment combined with chemotherapy, biological therapy, or immunotherapy, are discussed. Finally, as klotho was shown in preclinical models to inhibit cancer development and growth, we discuss various approaches to developing klotho-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modulation of oncogenic pathways by klotho.
Fig. 2: Protein structure of α-klotho.

Similar content being viewed by others

References

  1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.

    Article  CAS  PubMed  Google Scholar 

  3. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, et al. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007;316:1615–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286:8655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan Q, Ren Q, Li L, Tan H, Lu M, Tian Y, et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun. 2022;13:438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yee D. Targeting insulin-like growth factor pathways. Br J Cancer. 2006;94:465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27:7094–105.

    Article  CAS  PubMed  Google Scholar 

  9. Li XX, Huang LY, Peng JJ, Liang L, Shi DB, Zheng HT, et al. Klotho suppresses growth and invasion of colon cancer cells through inhibition of IGF1R-mediated PI3K/AKT pathway. Int J Oncol. 2014;45:611–8.

    Article  PubMed  Google Scholar 

  10. Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, et al. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:4254–66.

    Article  CAS  Google Scholar 

  11. Chen B, Ma X, Liu S, Zhao W, Wu J. Inhibition of lung cancer cells growth, motility and induction of apoptosis by Klotho, a novel secreted Wnt antagonist, in a dose-dependent manner. Cancer Biol Ther. 2012;13:1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang B, Gu Y, Chen Y. Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma. Cancer Investig. 2014;32:218–25.

    Article  CAS  Google Scholar 

  13. Arbel Rubinstein T, Shahmoon S, Zigmond E, Etan T, Merenbakh-Lamin K, Pasmanik-Chor M, et al. Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene. 2019;38:794–807.

    Article  CAS  PubMed  Google Scholar 

  14. Lojkin I, Rubinek T, Orsulic S, Schwarzmann O, Karlan BY, Bose S, et al. Reduced expression and growth inhibitory activity of the aging suppressor klotho in epithelial ovarian cancer. Cancer Lett. 2015;362:149–57.

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Liang Y, Chen L, Wei Y, Li Y, Zhao W, et al. Overexpression of klotho inhibits HELF fibroblasts SASP-related protumoral effects on non-small cell lung cancer cells. J Cancer. 2018;9:1248–58.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen B, Wang X, Zhao W, Wu J. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res. 2010;29:99.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Chen B, Xu W, Liu S, Zhao W, Wu J. Combined effects of klotho and soluble CD40 ligand on A549 lung cancer cells. Oncol Rep. 2011;25:1465–72.

    CAS  PubMed  Google Scholar 

  18. Rubinek T, Wolf I. The role of alpha-klotho as a universal tumor suppressor. Vitam Hormones. 2016;101:197–214.

    Article  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  20. Shmulevich R, Nissim TB, Wolf I, Merenbakh-Lamin K, Fishman D, Sekler I, et al. Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity. Oncogene. 2020;39:4636–49.

    Article  CAS  PubMed  Google Scholar 

  21. Delcroix V, Mauduit O, Tessier N, Montillaud A, Lesluyes T, Ducret T, et al. The role of the anti-aging protein klotho in IGF-1 signaling and reticular calcium leak: impact on the chemosensitivity of dedifferentiated liposarcomas. Cancers. 2018;10:439.

  22. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007;104:19796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dalton GD, Xie J, An SW, Huang CL. New insights into the mechanism of action of soluble klotho. Front Endocrinol. 2017;8:323.

    Article  Google Scholar 

  24. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242:626–30.

    Article  CAS  PubMed  Google Scholar 

  25. Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA. 2008;105:9805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317:803–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553:461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA. 2008;105:3455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011;13:254–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J, et al. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008;283:33304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ligumsky H, Rubinek T, Merenbakh-Lamin K, Yeheskel A, Sertchook R, Shahmoon S, et al. Tumor suppressor activity of klotho in breast cancer is revealed by structure-function analysis. Mol Cancer Res. 2015;13:1398–407.

    Article  CAS  PubMed  Google Scholar 

  32. Fakhar M, Najumuddin, Zahid S, Rashid S. Structural basis of Klotho binding to VEGFR2 and TRPC1 and repurposing calcium channel blockers as TRPC1 antagonists for the treatment of age-related cardiac hypertrophy. Arch Biochem Biophys. 2022;719:109171.

    Article  CAS  PubMed  Google Scholar 

  33. Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, et al. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem. 2004;279:9777–84.

    Article  CAS  PubMed  Google Scholar 

  34. Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X, et al. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2011;32:729–35.

    Article  CAS  Google Scholar 

  35. Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin J, et al. Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab Investig. 2016;96:197–205.

    Article  CAS  PubMed  Google Scholar 

  36. Shu G, Xie B, Ren F, Liu DC, Zhou J, Li Q, et al. Restoration of klotho expression induces apoptosis and autophagy in hepatocellular carcinoma cells. Cell Oncol. 2013;36:121–9.

    Article  CAS  Google Scholar 

  37. Sun H, Gao Y, Lu K, Zhao G, Li X, Li Z, et al. Overexpression of Klotho suppresses liver cancer progression and induces cell apoptosis by negatively regulating wnt/β-catenin signaling pathway. World J Surg Oncol. 2015;13:307.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Wang X, Wang X, Jie P, Lu H, Zhang S, et al. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011;1:111–9.

    CAS  PubMed  Google Scholar 

  39. Xie B, Zhou J, Shu G, Liu DC, Zhou J, Chen J, et al. Restoration of klotho gene expression induces apoptosis and autophagy in gastric cancer cells: tumor suppressive role of klotho in gastric cancer. Cancer Cell Int. 2013;13:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang B, Kim J, Jeong D, Jeong Y, Jeon S, Jung SI, et al. Klotho inhibits the capacity of cell migration and invasion in cervical cancer. Oncol Rep. 2012;28:1022–8.

    Article  CAS  PubMed  Google Scholar 

  41. Xie B, Cao K, Li J, Chen J, Tang J, Chen X, et al. Hmgb1 inhibits Klotho expression and malignant phenotype in melanoma cells by activating NF-κB. Oncotarget. 2016;7:80765–82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou X, Fang X, Jiang Y, Geng L, Li X, Li Y, et al. Klotho, an anti-aging gene, acts as a tumor suppressor and inhibitor of IGF-1R signaling in diffuse large B cell lymphoma. J Hematol Oncol. 2017;10:37.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010;9:109.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Camilli TC, Xu M, O’Connell MP, Chien B, Frank BP, Subaran S, et al. Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 2011;24:175–86.

    Article  CAS  PubMed  Google Scholar 

  45. Yan Y, Wang Y, Xiong Y, Lin X, Zhou P, Chen Z. Reduced Klotho expression contributes to poor survival rates in human patients with ovarian cancer, and overexpression of Klotho inhibits the progression of ovarian cancer partly via the inhibition of systemic inflammation in nude mice. Mol Med Rep. 2017;15:1777–85.

    Article  CAS  PubMed  Google Scholar 

  46. Arbel Rubinstein T, Reuveni I, Hesin A, Klein-Goldberg A, Olauson H, Larsson TE, et al. A transgenic model reveals the role of klotho in pancreatic cancer development and paves the way for new klotho-based therapy. Cancers. 2021;13:6297.

  47. Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A, et al. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012;133:649–57.

    Article  CAS  PubMed  Google Scholar 

  48. Gigante M, Lucarelli G, Divella C, Netti GS, Pontrelli P, Cafiero C, et al. Soluble serum α klotho is a potential predictive marker of disease progression in clear cell renal cell carcinoma. Medicine. 2015;94:e1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang X, Fan Z, Wang Y, Ji G, Wang M, Lin J, et al. Expression of klotho and β-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance. Dis Esophagus. 2016;29:207–14.

    Article  CAS  PubMed  Google Scholar 

  50. Wu Q, Jiang L, Wu J, Dong H, Zhao Y. Klotho inhibits proliferation in a RET fusion model of papillary thyroid cancer by regulating the Wnt/β-catenin pathway. Cancer Manag Res. 2021;13:4791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu L, Katsaros D, Wiley A, de la Longrais IA, Puopolo M, Yu H. Klotho expression in epithelial ovarian cancer and its association with insulin-like growth factors and disease progression. Cancer Investig. 2008;26:185–92.

    Article  CAS  Google Scholar 

  52. Zhu Y, Xu L, Zhang J, Xu W, Liu Y, Yin H, et al. Klotho suppresses tumor progression via inhibiting PI3K/Akt/GSK3β/Snail signaling in renal cell carcinoma. Cancer Sci. 2013;104:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pawlikowski M, Pisarek H, Borkowska M, Winczyk K. Expression of α-Klotho protein in human thyroid cancers—an immunohistochemical study. Endokrynologia Pol. 2019;70:237–40.

    Article  CAS  Google Scholar 

  54. Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG, et al. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget. 2015;6:19647–60.

    Article  PubMed  PubMed Central  Google Scholar 

  55. King GD, Rosene DL, Abraham CR. Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age. 2012;34:1405–19.

    Article  CAS  PubMed  Google Scholar 

  56. Peshes-Yeloz N, Ungar L, Wohl A, Jacoby E, Fisher T, Leitner M, et al. Role of klotho protein in tumor genesis, cancer progression, and prognosis in patients with high-grade glioma. World Neurosurg. 2019;130:e324–32.

    Article  PubMed  Google Scholar 

  57. Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H, et al. Klotho predicts good clinical outcome in patients with limited-disease small cell lung cancer who received surgery. Lung Cancer. 2011;74:332–7.

    Article  PubMed  Google Scholar 

  58. Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H, et al. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2011;72:355–9.

    Article  PubMed  Google Scholar 

  59. Zhu Y, Cao X, Zhang X, Chen Q, Wen L, Wang P. DNA methylation-mediated Klotho silencing is an independent prognostic biomarker of head and neck squamous carcinoma. Cancer Manag Res. 2019;11:1383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heijboer AC, Blankenstein MA, Hoenderop J, de Borst MH, Vervloet MG. Laboratory aspects of circulating α-Klotho. Nephrol, Dialysis, Transplant. 2013;28:2283–7.

    Article  CAS  Google Scholar 

  61. Zhou Y, Kuang Y, Zhou J. Klotho protects against LPS-induced inflammation injury by inhibiting Wnt and NF-κB pathways in HK-2 cells. Die Pharm. 2017;72:227–31.

    CAS  Google Scholar 

  62. Chen J, Fan J, Wang S, Sun Z. Secreted klotho attenuates inflammation-associated aortic valve fibrosis in senescence-accelerated mice P1. Hypertension. 2018;71:877–85.

    Article  CAS  PubMed  Google Scholar 

  63. Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. Am J Pathol. 2014;184:827–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okada S, Yoshida T, Hong Z, Ishii G, Hatano M, Kuro OM, et al. Impairment of B lymphopoiesis in precocious aging (klotho) mice. Int Immunol. 2000;12:861–71.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu WS, Naler L, Maul RW, Sallin MA, Sen JM. Immune system development and age-dependent maintenance in Klotho-hypomorphic mice. Aging. 2019;11:5246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  67. Witkowski JM, Soroczyńska-Cybula M, Bryl E, Smoleńska Z, Jóźwik A. Klotho-a common link in physiological and rheumatoid arthritis-related aging of human CD4+ lymphocytes. J Immunol. 2007;178:771–7.

    Article  CAS  PubMed  Google Scholar 

  68. Hui H, Zhai Y, Ao L, Cleveland JC Jr., Liu H, Fullerton DA, et al. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice. Oncotarget. 2017;8:15663–76.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis. 2018;1864:238–51.

    Article  CAS  PubMed  Google Scholar 

  70. Jorge LB, Coelho FO, Sanches TR, Malheiros D, Ezaquiel de Souza L, Dos, Santos F, et al. Klotho deficiency aggravates sepsis-related multiple organ dysfunction. Am J Physiol Ren Physiol. 2019;316:F438–48.

    Article  Google Scholar 

  71. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scott SC, Pennell NA. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab. J Thorac Oncol. 2018;13:1771–5.

    Article  PubMed  Google Scholar 

  74. Arbour KC, Mezquita L, Long N, Rizvi H, Auclin E, Ni A, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36:2872–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kartolo A, Deluce J, Holstead R, Hopman W, Lenehan J, Baetz T. Impact of baseline corticosteroids on immunotherapy efficacy in patients with advanced melanoma. J Immunother. 2021;44:167–74.

    Article  CAS  PubMed  Google Scholar 

  76. Drakaki A, Dhillon PK, Wakelee H, Chui SY, Shim J, Kent M, et al. Association of baseline systemic corticosteroid use with overall survival and time to next treatment in patients receiving immune checkpoint inhibitor therapy in real-world US oncology practice for advanced non-small cell lung cancer, melanoma, or urothelial carcinoma. Oncoimmunology. 2020;9:1824645.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Allaoui R, Bergenfelz C, Mohlin S, Hagerling C, Salari K, Werb Z, et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun. 2016;7:13050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rassy E, Flippot R, Albiges L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther Adv Med Oncol. 2020;12:1758835920907504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004;110:1148–55.

    Article  PubMed  Google Scholar 

  82. Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando-Randone S, et al. Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther. 2017;19:27.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li Q, Li Y, Liang L, Li J, Luo D, Liu Q, et al. Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis. Cell Commun Signal. 2018;16:26.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Takegahara K, Usuda J, Inoue T, Sonokawa T, Matsui T, Matsumoto M. Antiaging gene Klotho regulates epithelial-mesenchymal transition and increases sensitivity to pemetrexed by inducing lipocalin-2 expression. Oncol Lett. 2021;21:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Massó A, Sánchez A, Bosch A, Giménez-Llort L, Chillón M. Secreted αKlotho isoform protects against age-dependent memory deficits. Mol Psychiatry. 2018;23:1937–47.

    Article  PubMed  Google Scholar 

  86. Chen CD, Zeldich E, Li Y, Yuste A, Abraham CR. Activation of the anti-aging and cognition-enhancing gene klotho by CRISPR-dCas9 transcriptional effector complex. J Mol Neurosci. 2018;64:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen CD, Rudy MA, Zeldich E, Abraham CR. A method to specifically activate the Klotho promoter by using zinc finger proteins constructed from modular building blocks and from naturally engineered Egr1 transcription factor backbone. FASEB J. 2020;34:7234–46.

    Article  CAS  PubMed  Google Scholar 

  88. King GD, Chen C, Huang MM, Zeldich E, Brazee PL, Schuman ER, et al. Identification of novel small molecules that elevate Klotho expression. Biochem J. 2012;441:453–61.

    Article  CAS  PubMed  Google Scholar 

  89. Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, et al. Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene. 2010;29:26–33.

  90. Liu C, Cui W, Wang L, Yan L, Ruan X, Liu Y, et al. Klotho gene polymorphisms are related to colorectal cancer susceptibility. Int J Clin Exp Pathol. 2015;8:7446–9.

  91. Xie B, Zhou J, Yuan L, Ren F, Liu D-C, Li Q, et al. Epigenetic silencing of Klotho expression correlates with poor prognosis of human hepatocellular carcinoma. Human Pathol. 2013;44:795–801.

  92. Pako J, Bikov A, Barta I, Matsueda H, Puskas R, Galffy G, et al. Assessment of the circulating klotho protein in lung cancer patients. Pathol Oncol Res. 2020;26:233–8.

  93. Eric F, Pettersen Thomas D, Goddard Conrad C, Huang Gregory S, Couch Daniel M, Greenblatt Elaine C, et al. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

Download references

Acknowledgements

The research leading to this work has received funding supported by Tova and Sami Sagol Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HL, IW, and TR; literature review: HL, KML, and TR; Protein modeling: NKK; Writing and revising the paper: HL, KML, IW, and TR.

Corresponding author

Correspondence to Tami Rubinek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ligumsky, H., Merenbakh-Lamin, K., Keren-Khadmy, N. et al. The role of α-klotho in human cancer: molecular and clinical aspects. Oncogene 41, 4487–4497 (2022). https://doi.org/10.1038/s41388-022-02440-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02440-5

This article is cited by

Search

Quick links