Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated expression of RIT1 hyperactivates RAS/MAPK signal and sensitizes hepatocellular carcinoma to combined treatment with sorafenib and AKT inhibitor

Abstract

Hyperactivation of RAS/MAPK signaling is commonly observed in hepatocellular carcinoma (HCC). Gain-of-function mutations of canonical RAS genes, however, are rarely detected and it remains unclear how the activity of this pathway is turned on during hepatocarcinogenesis. We performed a comprehensive analysis of RAS superfamily genetic alterations across ten subfamilies, 152 members in 377 HCC patients from the Cancer Genome Atlas database. RIT1 (Ras-like without CAAX 1) was the most frequently altered RAS member amplified in 13% of the HCC cohort. Both genomic amplification and CREB-mediated transcriptional activation contributed to the elevated RIT1 expression, and its overexpression correlated with RAS/MAPK activation and poor prognosis. Then, we found that RIT1-induced angiogenesis via the MEK/ERK/EIF4E/HIF1-α/VEGFA axis. MAP3K11 and MAP3K12, in addition to CRAF, could mediate this process by binding to RIT1. Moreover, RIT1 increased the phosphorylation of p38 MAPK and AKT to promote cell survival under reactive oxygen species stress. Based on this mechanistic understanding, we treated RIT1-overexpressing HCC with combined regimen sorafenib plus AKT inhibitor, and achieved enhanced antitumor effects in vivo. Our study reveals RAS “orphan” member RIT1 as the most common genetic alteration of RAS family in HCC and combination of sorafenib with AKT inhibitor might be a promising treatment strategy for RIT1-overexpressing HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Copy number amplification of RIT1 is the most frequent genetic alteration of RAS family in HCC and associates with RAS/MAPK activation.
Fig. 2: RIT1 overexpression can be transcriptionally activated by CREB protein and associates with poor prognosis.
Fig. 3: RIT1 confers robust tumorigenic and metastatic properties to HCC cells.
Fig. 4: RIT1 promotes a tumor vasculature phenotype.
Fig. 5: RIT1 induces angiogenesis through upregulation of VEGFA.
Fig. 6: RIT1 activates MEK/ERK via multiple MAP3Ks.
Fig. 7: RIT1 enhances HCC cell survival and metastasis under ROS stress.
Fig. 8: RIT1 is a useful biomarker to classify patients for sorafenib plus AKT inhibitor combined treatment.

Similar content being viewed by others

References

  1. Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L, et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell. 2014;25:243–56.

    Article  CAS  Google Scholar 

  2. Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 2018;15:709–20.

    Article  CAS  Google Scholar 

  3. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175–80.

    Article  CAS  Google Scholar 

  4. Waters AM, Der CJ. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2018;8:a031435.

    Article  Google Scholar 

  5. Taketomi A, Shirabe K, Muto J, Yoshiya S, Motomura T, Mano Y, et al. A rare point mutation in the Ras oncogene in hepatocellular carcinoma. Surg Today. 2013;43:289–92.

    Article  CAS  Google Scholar 

  6. Delire B, Starkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Investig. 2015;45:609–23.

    Article  CAS  Google Scholar 

  7. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell. 2011;19:629–39.

    Article  CAS  Google Scholar 

  8. Al-Salama ZT, Syed YY, Scott LJ. Lenvatinib: a review in hepatocellular carcinoma. Drugs. 2019;79:665–74.

    Article  CAS  Google Scholar 

  9. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  Google Scholar 

  10. Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA, et al. An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell. 2011;22:3231–41.

    Article  CAS  Google Scholar 

  11. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013;93:173–80.

    Article  CAS  Google Scholar 

  12. Feng YF, Lei YY, Lu JB, Xi SY, Zhang Y, Huang QT, et al. RIT1 suppresses esophageal squamous cell carcinoma growth and metastasis and predicts good prognosis. Cell Death Dis. 2018;9:1085.

    Article  Google Scholar 

  13. Xu F, Sun S, Yan S, Guo H, Dai M, Teng Y. Elevated expression of RIT1 correlates with poor prognosis in endometrial cancer. Int J Clin Exp Pathol. 2015;8:10315–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang P, Kang B, Xie G, Li S, Gu Y, Shen Y, et al. Genomic sequencing and editing revealed the GRM8 signaling pathway as potential therapeutic targets of squamous cell lung cancer. Cancer Lett. 2019;442:53–67.

    Article  CAS  Google Scholar 

  15. Li J, Liu W, Kuang ZH, Chen HK, Li DJ, Feng QS, et al. Amplification of RIT1 in hepatocellular carcinoma and its clinical significance. Ai Zheng. 2003;22:695–9.

    CAS  PubMed  Google Scholar 

  16. Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu M, et al. HIF-1alpha-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett. 2019;460:96–107.

    Article  CAS  Google Scholar 

  17. Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226–30.

    Article  CAS  Google Scholar 

  18. Kurata S. Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem. 2000;275:23413–6.

    Article  CAS  Google Scholar 

  19. Li N, Li L, Chen Y. The identification of core gene expression signature in hepatocellular carcinoma. Oxid Med Cell Longev. 2018;2018:3478305.

    PubMed  PubMed Central  Google Scholar 

  20. Fang Z, Marshall CB, Yin JC, Mazhab-Jafari MT, Gasmi-Seabrook GM, Smith MJ, et al. Biochemical classification of disease-associated mutants of RAS-like protein expressed in many tissues (RIT1). J Biol Chem. 2016;291:15641–52.

    Article  CAS  Google Scholar 

  21. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  Google Scholar 

  22. Cao J, He L, Lin G, Hu C, Dong R, Zhang J, et al. Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1alpha. Biochem Pharm. 2014;89:20–30.

    Article  CAS  Google Scholar 

  23. Shveygert M, Kaiser C, Bradrick SS, Gromeier M. Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol. 2010;30:5160–7.

    Article  CAS  Google Scholar 

  24. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91.

    Article  CAS  Google Scholar 

  25. Guan XY, Fang Y, Sham JS, Kwong DL, Zhang Y, Liang Q, et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes, Chromosomes Cancer. 2000;29:110–6.

    Article  CAS  Google Scholar 

  26. Shi GX, Cai W, Andres DA. Rit-mediated stress resistance involves a p38-mitogen- and stress-activated protein kinase 1 (MSK1)-dependent cAMP response element-binding protein (CREB) activation cascade. J Biol Chem. 2012;287:39859–68.

    Article  CAS  Google Scholar 

  27. Calcagni G, Limongelli G, D’Ambrosio A, Gesualdo F, Digilio MC, Baban A, et al. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results. Int J Cardiol. 2017;245:92–98.

    Article  Google Scholar 

  28. Harrison SM, Rudolph JL, Spencer ML, Wes PD, Montell C, Andres DA, et al. Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin during Drosophila development. Dev Dyn. 2005;232:817–26.

    Article  CAS  Google Scholar 

  29. Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, et al. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology. 2018;68:1459–75.

    Article  CAS  Google Scholar 

  30. Shao H, Kadono-Okuda K, Finlin BS, Andres DA. Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch Biochem Biophysics. 1999;371:207–19.

    Article  CAS  Google Scholar 

  31. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 1995;375:554–60.

    Article  CAS  Google Scholar 

  32. Shi GX, Andres DA. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol. 2005;25:830–46.

    Article  CAS  Google Scholar 

  33. Chadee DN. Involvement of mixed lineage kinase 3 in cancer. Can J Physiol Pharmacol. 2013;91:268–74.

    Article  CAS  Google Scholar 

  34. Huang YA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 2017;168:427–41.e421.

    Article  CAS  Google Scholar 

  35. Roth GS, Macek Jilkova Z, Zeybek Kuyucu A, Kurma K, Ahmad Pour ST, Abbadessa G, et al. Efficacy of AKT inhibitor ARQ 092 compared with sorafenib in a cirrhotic rat model with hepatocellular carcinoma. Mol Cancer Ther. 2017;16:2157–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Core Facility of University of Hong Kong for their support for flow cytometry analysis, confocal microscopy, and animal imaging.

Funding

This work was supported by the National Natural Science Foundation of China (82073127), Shenzhen Fundamental Research Programs (JCYJ20190809145215160), Shenzhen Science and Technology Innovation Commission (KYTDPT20181011104005 and KQTD2018041118502879), and Guangdong Innovative Research Team Fund (No. 2016ZT06S172). Hong Kong Research Grant Council grants including GRF (17143716), Collaborative Research Funds (C7065-18GF and C7026-18GF) and Theme-based Research Scheme (T12-704/16-R).

Author information

Authors and Affiliations

Authors

Contributions

XY-G, YL and LS devised and coordinated the project. LS performed all the experiments with help from SX, ZZ, FZ, PH, YC, ShashaW, YingW, ShayiW, YanchenW, YD, JZ, HY, MC, QY, DY, CS, YZ. DX and SX provided human samples, performed tumor grades and histological examination. LS and YL wrote the manuscript. XY-G and YL supervised the project.

Corresponding authors

Correspondence to Xin-Yuan Guan or Yan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Xi, S., Zhou, Z. et al. Elevated expression of RIT1 hyperactivates RAS/MAPK signal and sensitizes hepatocellular carcinoma to combined treatment with sorafenib and AKT inhibitor. Oncogene 41, 732–744 (2022). https://doi.org/10.1038/s41388-021-02130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02130-8

This article is cited by

Search

Quick links