Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Deficiency of Wiskott–Aldrich syndrome protein has opposing effect on the pro-oncogenic pathway activation in nonmalignant versus malignant lymphocytes

Abstract

Immunodeficiency is associated with cancer risk. Accordingly, hematolymphoid cancers develop in Wiskott–Aldrich syndrome (WAS), an X-linked primary immunodeficiency disorder (PID) resulting from the deficiency of WAS-protein (WASp) expressed predominantly in the hematolymphoid cell lineages. Despite the correlation between WASp deficiency and hematolymphoid cancers, the molecular mechanism underlying the oncogenic role of WASp is incompletely understood. Employing the WASp-sufficient and WASp-deficient cell-pair model of human T and B lymphocytes, we show that WASp deficiency differentially influences hyperactivation versus inhibition of both CDC42:ERK1/2 and NF-κB:AP-1 pro-oncogenic signaling pathways in nonmalignant versus malignant T and B lymphocytes. Furthermore, WASp deficiency induces a cell-type specific up/down-modulation of the DNA-binding activities of NF-κB, AP-1, and multiple other transcription factors with known roles in oncogenesis. We propose that WASp functions as a putative “tumor-suppressor” protein in normal T and B cells, and “oncoprotein” in a subset of established T and B cell malignancies that are not associated with the NPM-ALK fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The up/or down modulatory effect of WASp deficiency on CDC42-GTP levels is context-dependent.
Fig. 2: The up/or down modulatory effect of WASp deficiency on MAPK/ERK and PI3K/AKT pathways is also context-dependent.
Fig. 3: WASp deficiency alters the constitutive DNA-binding activities of NF-κB, AP-1, and multiple other transcription factors in a context-dependent manner.
Fig. 4: Pharmacological inhibition of hyperactivated CDC42-GTP and ERK pathways in nonmalignant WASp-deficient T and B cells decreases the DNA-binding activity of transcription factors and cell-growth.

Similar content being viewed by others

References

  1. Ochs HD, Thrasher AJ. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2006;117:725–38.

    Article  CAS  PubMed  Google Scholar 

  2. Bosticardo M, Marangoni F, Aiuti A, Villa A, Grazia, Roncarolo M. Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood 2009;113:6288–95.

    Article  CAS  PubMed  Google Scholar 

  3. Cheminant M, Mahlaoui N, Desconclois C, Canioni D, Ysebaert L, Dupré L, et al. Lymphoproliferative disease in patients with Wiskott-Aldrich syndrome: analysis of the French Registry of Primary Immunodeficiencies. J Allergy Clin Immunol. 2019;143:2311–5.

    Article  PubMed  Google Scholar 

  4. Keszei M, Kritikou JS, Sandfort D, He M, Oliveira MMS, Wurzer H, et al. Wiskott-Aldrich syndrome gene mutations modulate cancer susceptibility in the p53± murine model. Oncoimmunology 2018;7:e1468954.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Menotti M, Ambrogio C, Cheong TC, Pighi C, Mota I, Cassel SH, et al. Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25:130–40.

    Article  CAS  PubMed  Google Scholar 

  6. Murga-Zamalloa CA, Mendoza-Reinoso V, Sahasrabuddhe AA, Rolland D, Hwang SR, McDonnell SR, et al. NPM-ALK phosphorylates WASp Y102 and contributes to oncogenesis of anaplastic large cell lymphoma. Oncogene 2017;36:2085–94.

    Article  CAS  PubMed  Google Scholar 

  7. Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene 2017;36:3515–27.

    Article  CAS  PubMed  Google Scholar 

  8. Hou J, Yang H, Huang X, Leng X, Zhou F, Xie C, et al. N-WASP promotes invasion and migration of cervical cancer cells through regulating p38 MAPKs signaling pathway. Am J Transl Res. 2017;9:403–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hidalgo-Sastre A, Desztics J, Dantes Z, Schulte K, Ensarioglu HK, Bassey-Archibong B, et al. Loss of Wasl improves pancreatic cancer outcome. JCI Insight. 2020;5:e127275.

    Article  PubMed Central  Google Scholar 

  10. Li H, Petersen S, Garcia Mariscal A, Brakebusch C. Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Res. 2019;79:2167–81.

    Article  CAS  PubMed  Google Scholar 

  11. Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal. 2011;23:1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etienne-Manneville S. Cdc42-the centre of polarity. J Cell Sci. 2004;117:1291–300.

    Article  CAS  PubMed  Google Scholar 

  13. Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res. 2018;78:3101–11.

    Article  CAS  PubMed  Google Scholar 

  14. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  CAS  PubMed  Google Scholar 

  15. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Disco. 2014;13:140–56.

    Article  CAS  Google Scholar 

  16. Karin M. Nuclear factor-kappa B in cancer development and progression. Nature 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 2011;30:1615–30.

    Article  CAS  PubMed  Google Scholar 

  18. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005;7:351–62.

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rey-Suarez I, Wheatley BA, Koo P, Bhanja A, Shu Z, Mochrie S, et al. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat Commun. 2020;11:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CI, et al. N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol. 2013;11:e1001704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47:1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castellano G, Torrisi E, Ligresti G, Nicoletti F, Malaponte G, Traval S, et al. Yin Yang 1 overexpression in diffuse large B-cell lymphoma is associated with B-cell transformation and tumor progression. Cell Cycle. 2010;9:557–63.

    Article  CAS  PubMed  Google Scholar 

  24. Ramkumar C, Cui H, Kong Y, Jones SN, Gerstein RM, Zhang H. Smurf2 suppresses B-cell proliferation and lymphomagenesis by mediating ubiquitination and degradation of YY1. Nat Commun. 2013;4:2598.

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Li D, Sui G. YY1 Is an Inducer of Cancer Metastasis. Crit Rev Oncog. 2017;22:1–11.

    Article  PubMed  Google Scholar 

  26. Beishline K, Azizkhan-Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015;282:224–58.

    Article  CAS  PubMed  Google Scholar 

  27. Tong L, Tergaonkar V. Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep. 2014;34:e00115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Davuluri G, Augoff K, Schiemann WP, Plow EF, Sossey-Alaoui K. WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells. PLoS ONE. 2014;9:e110627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Meacham CE, Ho EE, Dubrovsky E, Gertler FB, Hemann MT. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat Genet. 2009;41:1133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T. Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 2005;24:1309–19.

    Article  CAS  PubMed  Google Scholar 

  31. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2:a003236.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem. 2018;51:2647–93.

    Article  CAS  PubMed  Google Scholar 

  33. Morris HT, Fort L, Spence HJ, Patel R, Vincent DF, Park JH, et al. Loss of N-WASP drives early progression in an Apc model of intestinal tumorigenesis. J Pathol. 2018;245:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Farber E. Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res. 1995;55:3759–62.

    CAS  PubMed  Google Scholar 

  35. Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D’Silva S, et al. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med. 2010;2:37ra44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sadhukhan S, Sarkar K, Taylor M, Candotti F, Vyas YM. Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. J Immunol. 2014;193:150–60.

    Article  CAS  PubMed  Google Scholar 

  37. Sarkar K, Sadhukhan S, Han SS, Vyas YM. Disruption of hSWI/SNF complexes in T cells by WAS mutations distinguishes X-linked thrombocytopenia from Wiskott-Aldrich syndrome. Blood 2014;124:3409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarkar K, Sadhukhan S, Han SS, Vyas YM. SUMOylation-disrupting WAS mutation converts WASp from a transcriptional activator to a repressor of NF-κB response genes in T cells. Blood 2015;126:1670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  40. Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, et al. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2018;142:219–34.

    Article  CAS  PubMed  Google Scholar 

  41. Wen KK, Han SS, Vyas YM. Wiskott-Aldrich syndrome protein senses irradiation-induced DNA damage to coordinate the cell-protective Golgi dispersal response in human T and B lymphocytes. J Allergy Clin Immunol. 2020;145:324–34.

    Article  CAS  PubMed  Google Scholar 

  42. Schrank BR, Aparicio T, Li Y, Chang W, Chait BT, Gundersen GG, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 2018;559:61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. Int J Mol Sci. 2017;18:1808.

    Article  PubMed Central  CAS  Google Scholar 

  44. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH, National Institute of Allergy and Infectious Diseases (NIAID) grants R21AI138051 and R01AI146380 (to YMV), the University of Iowa Dance Marathon (UIDM) research award (to SSH), Research Bridge Award from the Carver College of Medicine (to YMV), and the Endowment from the Mary Joy and Jerre Stead Foundation (to YMV). A subset of data was obtained at the Flow Cytometry Facility, which is a Carver College of Medicine/Holden Comprehensive Cancer Center core research facility at the University of Iowa. We thank the UIDM for supporting the research laboratory space where this work was carried out.

Funding

This work was supported in part by the NIH grant R21AI138051 and R01AI146380 (to YMV).

Author information

Authors and Affiliations

Authors

Contributions

SSH generated all CRISPR/Cas9-mediated WAS gene KO cellular models and performed the majority of molecular and cellular assays. KKW performed all Western blots, flow studies, and cell-survival assays. YMV conceived the study, designed the experiments, analyzed and interpreted the data, and wrote the paper.

Corresponding author

Correspondence to Yatin M. Vyas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SS., Wen, KK. & Vyas, Y.M. Deficiency of Wiskott–Aldrich syndrome protein has opposing effect on the pro-oncogenic pathway activation in nonmalignant versus malignant lymphocytes. Oncogene 40, 345–354 (2021). https://doi.org/10.1038/s41388-020-01533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01533-3

This article is cited by

Search

Quick links