Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain

Abstract

Systemic toxicity and tumor cell resistance still limit the efficacy of chemotherapy in colorectal cancer. Therefore, alternative treatments are desperately needed. The thiazolide Nitazoxanide (NTZ) is an FDA-approved drug for the treatment of parasite-mediated infectious diarrhea with a favorable safety profile. Interestingly, NTZ and the thiazolide RM4819—its bromo-derivative lacking antibiotic activity—are also promising candidates for cancer treatment. Yet the exact anticancer mechanism(s) of these compounds still remains unclear. In this study, we systematically investigated RM4819 and NTZ in 2D and 3D colorectal cancer culture systems. Both compounds strongly inhibited proliferation of colon carcinoma cell lines by promoting G1 phase cell cycle arrest. Thiazolide-induced cell cycle arrest was independent of the p53/p21 axis, but was mediated by inhibition of protein translation via the mTOR/c-Myc/p27 pathway, likely caused by inhibition of mitochondrial respiration. While both thiazolides demonstrated mitochondrial uncoupling activity, only RM4819 inhibited the mitochondrial respiratory chain complex III. Interestingly, thiazolides also potently inhibited the growth of murine colonic tumoroids in a comparable manner with cisplatin, while in contrast to cisplatin thiazolides did not affect the growth of primary intestinal organoids. Thus, thiazolides appear to have a tumor-selective antiproliferative activity, which offers new perspectives in the treatment of colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thiazolides induce G1 cell cycle arrest independent of apoptosis induction.
Fig. 2: Thiazolides induced G1 cell cycle arrest is independent of the p53/p21 axis.
Fig. 3: Thiazolide induce p27 stabilization via reduction of c-Myc protein translation.
Fig. 4: RM4819 and NTZ induce energy depletion by directly targeting mitochondrial oxidative phosphorylation.
Fig. 5: RM4819 but not NTZ strongly inhibits mitochondrial respiratory chain complex III.
Fig. 6: RM4819 and NTZ strongly inhibit the proliferation of intestinal tumoroids without altering intestinal organoids growth.

Similar content being viewed by others

References

  1. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    CAS  PubMed  Google Scholar 

  2. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Prim. 2015;1:15065.

    Google Scholar 

  3. Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother. 2014;68:911–6.

    CAS  PubMed  Google Scholar 

  4. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat Rev. 2019;76:22–32.

    CAS  PubMed  Google Scholar 

  5. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;41–58.

    PubMed  Google Scholar 

  6. Fox LM, Saravolatz LD. Nitazoxanide: a new thiazolide antiparasitic agent. Clin Infect Dis. 2005;40:1173–80.

    CAS  PubMed  Google Scholar 

  7. Yamamoto Y, Hakki A, Friedman H, Okubo S, Shimamura T, Hoffman PS, et al. Nitazoxanide, a nitrothiazolide antiparasitic drug, is an anti-Helicobacter pylori agent with anti-vacuolating toxin activity. Chemotherapy. 1999;45:303–12.

    CAS  PubMed  Google Scholar 

  8. McVay CS, Rolfe RD. In vitro and in vivo activities of nitazoxanide against Clostridium difficile. Antimicrob Agents Chemother. 2000;44:2254–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guttner Y, Windsor HM, Viiala CH, Dusci L, Marshall BJ. Nitazoxanide in treatment of Helicobacter pylori: a clinical and in vitro study. Antimicrob Agents Chemother. 2003;47:3780–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Aslam S, Musher DM. Nitazoxanide: clinical studies of a broad-spectrum anti-infective agent. Future Microbiol. 2007;2:583–90.

    CAS  PubMed  Google Scholar 

  11. de Carvalho LPS, Lin G, Jiang X, Nathan C. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem. 2009;52:5789–92.

    PubMed  Google Scholar 

  12. de Carvalho LPS, Darby CM, Rhee KY, Nathan C. Nitazoxanide Disrupts Membrane Potential and Intrabacterial pH Homeostasis of Mycobacterium tuberculosis. ACS Med Chem Lett. 2011;2:849–54.

    PubMed  PubMed Central  Google Scholar 

  13. Lam KKY, Zheng X, Forestieri R, Balgi AD, Nodwell M, Vollett S, et al. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog. 2012;8:e1002691.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lateef M, Zargar SA, Khan AR, Nazir M, Shoukat A. Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide. Int J Infect Dis. 2008;12:80–2.

    CAS  PubMed  Google Scholar 

  15. Ashour DS, Abou Rayia DM, Saad AE, El-Bakary RH. Nitazoxanide anthelmintic activity against the enteral and parenteral phases of trichinellosis in experimentally infected rats. Exp Parasitol 2016;170:28–35.

    CAS  PubMed  Google Scholar 

  16. Rossignol JF, Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am J Trop Med Hyg. 1984;33:511–2.

    CAS  PubMed  Google Scholar 

  17. Juan JO, Lopez Chegne N, Gargala G, Favennec L. Comparative clinical studies of nitazoxanide, albendazole and praziquantel in the treatment of ascariasis, trichuriasis and hymenolepiasis in children from Peru. Trans R Soc Trop Med Hyg. 2002;96:193–6.

    PubMed  Google Scholar 

  18. Favennec L, Jave Ortiz J, Gargala G, Lopez Chegne N, Ayoub A, Rossignol JF. Double-blind, randomized, placebo-controlled study of nitazoxanide in the treatment of fascioliasis in adults and children from northern Peru. Aliment Pharmacol Ther. 2003;17:265–70.

    CAS  PubMed  Google Scholar 

  19. Rossignol J-F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir Res 2014;110:94–103.

    CAS  PubMed  Google Scholar 

  20. Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 2016;9:227–30.

    PubMed  Google Scholar 

  21. Perelygina L, Hautala T, Seppänen M, Adebayo A, Sullivan KE, Icenogle J. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide in cell culture and in a patient with a primary immune deficiency. Antivir Res. 2017;147:58–66.

    CAS  PubMed  Google Scholar 

  22. Tilmanis D, van Baalen C, Oh DY, Rossignol J-F, Hurt AC. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antivir Res. 2017;147:142–8.

    CAS  PubMed  Google Scholar 

  23. Hickson SE, Margineantu D, Hockenbery DM, Simon JA, Geballe AP. Inhibition of vaccinia virus replication by nitazoxanide. Virology. 2018;518:398–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Piacentini S, La Frazia S, Riccio A, Pedersen JZ, Topai A, Nicolotti O, et al. Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57. Sci Rep. 2018;8:10425.

    PubMed  PubMed Central  Google Scholar 

  25. Di Santo N, Ehrisman J. A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res Mol Mech Mutagen. 2014;768:16–21.

    Google Scholar 

  26. Shakya A, Bhat HR, Ghosh SK. Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol. 2018;15:201–13.

    CAS  PubMed  Google Scholar 

  27. Muller J, Sidler D, Nachbur U, Wastling J, Brunner T, Hemphill A. Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int J Cancer. 2008;123:1797–806.

    CAS  PubMed  Google Scholar 

  28. Wang X, Shen C, Liu Z, Peng F, Chen X, Yang G, et al. Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. Cell Death Dis. 2018;9:1032.

    PubMed  PubMed Central  Google Scholar 

  29. Qu Y, Olsen JR, Yuan X, Cheng PF, Levesque MP, Brokstad KA, et al. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat Chem Biol. 2017;14:94–101.

    PubMed  Google Scholar 

  30. Senkowski W, Zhang X, Olofsson MH, Isacson R, Hoglund U, Gustafsson M, et al. Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol Cancer Ther. 2015;14:1504–16.

    CAS  PubMed  Google Scholar 

  31. Fan-Minogue H, Bodapati S, Solow-Cordero D, Fan A, Paulmurugan R, Massoud TF, et al. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol Cancer Ther. 2013;12:1896–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sidler D, Brockmann A, Mueller J, Nachbur U, Corazza N, Renzulli P, et al. Thiazolide-induced apoptosis in colorectal cancer cells is mediated via the Jun kinase–Bim axis and reveals glutathione-S-transferase P1 as Achilles’ heel. Oncogene. 2012;31:4095–106.

    CAS  PubMed  Google Scholar 

  33. Brockmann A, Strittmatter T, May S, Stemmer K, Marx A, Brunner T. Structure–function relationship of thiazolide-induced apoptosis in colorectal tumor cells. ACS Chem Biol. 2014;9:1520–7.

    CAS  PubMed  Google Scholar 

  34. La Frazia S, Piacentini S, Riccio A, Rossignol JF, Santoro MG. The second-generation thiazolide haloxanide is a potent inhibitor of avian influenza virus replication. Antivir Res. 2018;157:159–68.

    PubMed  Google Scholar 

  35. Stachulski AV, Santoro MG, Piacentini S, Belardo G, Frazia SL, Pidathala C, et al. Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus. Future Med Chem. 2018;10:851–62.

    CAS  PubMed  Google Scholar 

  36. Stachulski AV, Swift K, Cooper M, Reynolds S, Norton D, Slonecker SD, et al. Synthesis and pre-clinical studies of new amino-acid ester thiazolide prodrugs. Eur J Med Chem. 2017;126:154–9.

    CAS  PubMed  Google Scholar 

  37. Webster PC. Alarm grows over management of antibiotic resistance file. CMAJ. 2010;182:E141–2.

    PubMed  Google Scholar 

  38. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9:e1403.

    PubMed  PubMed Central  Google Scholar 

  39. Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflamm. 2019;16:108.

    Google Scholar 

  40. Hu Y, Wong FS, Wen L. Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res. 2017;119:219–26.

    PubMed  PubMed Central  Google Scholar 

  41. Pankuch GA, Appelbaum PC. Activities of tizoxanide and nitazoxanide compared to those of five other thiazolides and three other agents against anaerobic species. Antimicrob Agents Chemother. 2006;50:1112–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hauck L, von Harsdorf R. E2F transcription factors and pRb pocket proteins in cell cycle progression. Methods Mol Biol. 2005;296:239–45.

    CAS  PubMed  Google Scholar 

  43. El-Deiry WS. p21(WAF1) Mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res 2016;76:5189–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA. 2006;103:976–81.

    CAS  PubMed  Google Scholar 

  45. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008;8:253–67.

    CAS  PubMed  Google Scholar 

  46. Hydbring P, Castell A, Larsson LG. MYC modulation around the CDK2/p27/SKP2 axis. Genes. 2017;8:E174.

    PubMed  Google Scholar 

  47. Castell A, Larsson L-G. Targeting MYC translation in colorectal cancer. Cancer Discov. 2015;5:701–3.

    CAS  PubMed  Google Scholar 

  48. Tsou P, Zheng B, Hsu C-H, Sasaki AT, Cantley LC. A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab. 2011;13:476–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Delp J, Funke M, Rudolf F, Cediel A, Bennekou SH, van der Stel W, et al. Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Arch Toxicol. 2019;93:1585–608.

    CAS  PubMed  Google Scholar 

  50. Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Investig. 2018;128:3682–91.

    PubMed  Google Scholar 

  51. Yan B, Dong L, Neuzil J. Mitochondria: an intriguing target for killing tumour-initiating cells. Mitochondrion. 2016;26:86–93.

    CAS  PubMed  Google Scholar 

  52. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11:9–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fontaine E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front Endocrinol. 2018;9:753.

    Google Scholar 

  54. Bode KJ, Mueller S, Schweinlin M, Metzger M, Brunner T. A fast and simple fluorometric method to detect cell death in 3D intestinal organoids. BioTechniques. 2019;67:23–8.

    CAS  PubMed  Google Scholar 

  55. Neufert C, Becker C, Neurath MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc. 2007;2:1998–2004.

    CAS  PubMed  Google Scholar 

  56. Xue X, Shah YM. In vitro organoid culture of primary mouse colon tumors. J Vis Exp. 2013;17:e50210.

    Google Scholar 

  57. Grabinger T, Delgado E, Brunner T. Analysis of cell death induction in intestinal organoids in vitro. Methods Mol Biol. 2016;1419:83–93.

    PubMed  Google Scholar 

  58. Delp J, Gutbier S, Cerff M, Zasada C, Niedenfuhr S, Zhao L, et al. Stage-specific metabolic features of differentiating neurons: implications for toxicant sensitivity. Toxicol Appl Pharmacol. 2018;354:64–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by a research grants from the DFG-funded Konstanz Research School-Chemical Biology (KoRS-CB, GSC 2018), the BMBF (e:ToP program, NeuriTox), and the Projects from the European Union’s Horizon 2020 research and innovation program EU-ToxRisk (grant agreement No 681002) and ENDpoiNTs (grant agreement No 825759). PR received a fellowship from the Deutscher Akademischer Austauschdienst (DAAD), JD and KB from the Baden-Württemberg Ministry of Science, Research and Art–funded Co-operative research training school InViTe. The authors like to thank A. Ahmed for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brunner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripani, P., Delp, J., Bode, K. et al. Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain. Oncogene 39, 2345–2357 (2020). https://doi.org/10.1038/s41388-019-1142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1142-6

This article is cited by

Search

Quick links