Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polo-like kinases and acute leukemia

Abstract

Acute leukemia is a common malignancy among children and adults worldwide and many patients suffer from chronic health issues using current therapeutic approaches. Therefore, there is a great need for the development of novel and more specific therapies with fewer side effects. The family of Polo-like kinases (Plks) is a group of five serine/threonine kinases that play an important role in cell cycle regulation and are critical targets for therapeutic invention. Plk1 and Plk4 are novel targets for cancer therapy as leukemic cells often express higher levels than normal cells. In contrast, Plk2 and Plk3 are considered to be tumor suppressors. Several small molecule inhibitors have been developed for targeting Plk1 inhibition. Despite reaching phase III clinical trials, one of the ATP-competitive Plk1 inhibitor, volasertib, did not induce an objective clinical response and even caused lethal side effects in some patients. In order to improve the specificity of the Plk1 inhibitors and reduce off-target side effects, novel RNA interference (RNAi)-based therapies have been developed. In this review, we summarize the mechanisms of action of the Plk family members in acute leukemia, describe preclinical studies and clinical trials involving Plk-targeting drugs and discuss novel approaches in Plk targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012v1.0, Cancer Incidence and Mortality Worldwide. 11. Lyon, France: International Agency for Research on Cancer; 2013.

    Google Scholar 

  2. Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32:1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reaman Gregory H, Smith Franklin O. Childhood Leukemia. In: Reaman GH, Smith FO, editors. The Practical Handbook. Berlin, Heidelberg: Springer; 2011. p. 336.

    Google Scholar 

  4. Pritchard-Jones K, Hargrave D. Declining childhood and adolescent cancer mortality: Great progress but still much to be done. Cancer. 2014;120:2388–91. p

    Article  PubMed  Google Scholar 

  5. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18:547.

    Article  CAS  PubMed  Google Scholar 

  6. WHO classification of tumours of haematopoietic and lymphoid tissues Introduction. 2008. 586 p.

  7. Girardi T, Vicente C, Cools J, Keersmaecker DeK. The genetics and molecular biology of T-ALL. Blood. 2017;129:1113–23. https://doi.org/10.1016/S0072-9752(07)01230-4

    Article  CAS  PubMed  Google Scholar 

  8. Metayer C, Milne E, Clavel J, Infante-Rivard C, Petridou E, Taylor M, et al. The Childhood Leukemia International Consortium. Cancer Epidemiol. 2013;37:336–47.

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Bloodn Cancer J. 2016;6:e441 https://doi.org/10.1038/bcj.2016.50

    Article  Google Scholar 

  10. Sobin L, Parkin DM International Classification of Diseases for Oncology. 2000;240 pages. http://whqlibdoc.who.int/publications/2000/9241545348_eng.pdf

  11. Osca-Gelis G, Puig-Vives M, Saez M, Gallardo D, Lloveras N, Marcos-Gragera R. Population-based incidence of myeloid malignancies: fifteen years of epidemiological data in the province of Girona, Spain. Haematologica. 2013;98:95–7.

    Article  Google Scholar 

  12. Gustafsson G, Kogner P, Heyman M. Childhood Cancer Incidence and Survival in Sweden 1984–2010. Child Cancer Incid Surviv Sweden 1984–2010. 2013;1–91.

  13. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.

    Article  PubMed  Google Scholar 

  14. Zwaan CM, Kolb EA, Reinhardt D, Abrahamsson J, Adachi S, Aplenc R, et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015;33:2949–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas DA, Kantarjian H, Smith TL, Koller C, Cortes J, O’Brien S, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999;86:1216–30.

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen SN, Eriksson F, Rosthoej S, Andersen MK, Forestier E, Hasle H, et al. Children with low-risk acute lymphoblastic leukemia are at highest risk of second cancers. Pediatr Blood Cancer. 2017;64:1–9.

    Article  Google Scholar 

  17. Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15:433–52. https://doi.org/10.1038/nrm3819%5Cn10.1038/nrm3819%5Cn http://www.nature.com/nrm/journal/v15/n7/abs/nrm3819.html#supplementary-information

  18. Elia AEH, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell. 2003;115:83–95.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 2003;22:5757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang Y-J, Lin C-Y, Ma S, Erikson RL. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc Natl Acad Sci Usa. 2002;99:1984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holtrich U, Wolf G, Bräuninger A, Karn T, Böhme B, Rübsamen-Waigmann H, et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci USA. 1994;91:1736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindon C, Pines J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol. 2004;164:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu D, Davydenko O, Lampson MA. Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell Biol. 2012;198:491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu C-K, Ozlu N, Coughlin M, Steen JJ, Mitchison TJ. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis. Mol Biol Cell. 2012;23:2702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dinner S, Platanias LC. Targeting the mTOR Pathway in Leukemia. J Cell Biochem. 2016;1752:1745–52.

    Article  Google Scholar 

  26. Gjertsen BT, Schöffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29:11–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ, Jin W. TrkC promotes survival and growth of leukemia cells through akt-mtor-dependent up-regulation of PLK-1 and Twist-1. Mol Cells. 2013;36:177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolosenko I, Edsbäcker E, Björklund A-C, Hamil AS, Goroshchuk O, Grandér D, et al. RNAi prodrugs targeting Plk1 induce specific gene silencing in primary cells from pediatric T-acute lymphoblastic leukemia patients. J Control Release. 2017;261:199–206. http://linkinghub.elsevier.com/retrieve/pii/S0168365917306983

  29. Renner AG, Dos Santos C, Recher C, Bailly C, Créancier L, Kruczynski A, et al. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood. 2009;114:659–62.

    Article  CAS  PubMed  Google Scholar 

  30. Ikezoe T, Yang J, Nishioka C, Takezaki Y, Tasaka T, Togitani K, et al. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Leukemia. 2009;23:1564–76. http://www.ncbi.nlm.nih.gov/pubmed/19421227

  31. Hartsink-Segers SA, Exalto C, Allen M, Williamson D, Clifford SC, Horstmann M, et al. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells. Haematologica. 2013;98:1539 LP-1546. http://www.haematologica.org/content/98/10/1539.abstract

  32. Wang NN, Li ZH, Zhao H, Tao YF, Xu LX, Lu J, et al. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci. 2015;16:1266–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oliveira JC, Pezuk JA, Brassesco MS, Morales AG, Queiroz RGP, Scrideli CA, et al. PLK1 expression and BI2536 effects in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;61:1227–31.

    CAS  Google Scholar 

  34. Lee KS, Burke TR, Park JJ, Bang JK, Lee E. Recent advances and new strategies in targeting Plk1 for anticancer therapy. Trends Pharmacol Sci. 2015;36:858–77. Available from https://doi.org/10.1016/j.tips.2015.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simmons DL, Neel BG, Stevens R, Evett G, Erikson RL. Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol. 1992;12:4164–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=360319&tool=pmcentrez&rendertype=abstract

  36. Cizmecioglu O, Warnke S, Arnold M, Duensing S, Hoffmann I. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain. Cell Cycle. 2008;7:3548–55.

    Article  CAS  PubMed  Google Scholar 

  37. Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol. 2003;23:5556–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Syed N, Smith P, Sullivan A, Spender LC, Dyer M, Karran L, et al. Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood. 2006;107:250–6.

    Article  CAS  PubMed  Google Scholar 

  39. Benetatos L, Dasoula A, Hatzimichael E, Syed N, Voukelatou M, Dranitsaris G, et al. Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions. Ann Hematol. 2011;90:1037–45.

    Article  CAS  PubMed  Google Scholar 

  40. De Viron E, Knoops L, Connerotte T, Smal C, Michaux L, Saussoy P, et al. Impaired up-regulation of polo-like kinase 2 in B-cell chronic lymphocytic leukaemia lymphocytes resistant to fludarabine and 2-chlorodeoxyadenosine: a potential marker of defective damage response. Br J Haematol. 2009;147:641–52.

    Article  PubMed  Google Scholar 

  41. Donohue PJ, Alberts GF, Guo Y, Winkles JA. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem. 1995;270:10351–7.

    Article  CAS  PubMed  Google Scholar 

  42. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–91. https://doi.org/10.1038/sj.onc.1208272

    Article  CAS  PubMed  Google Scholar 

  43. Ouyang B, Pan H, Lu L, Li J, Stambrook P, Li B, et al. Human prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem. 1997;272:28646–51.

    Article  CAS  PubMed  Google Scholar 

  44. Bahassi EM, Myer DL, McKenney RJ, Hennigan RF, Stambrook PJ. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res - Fundam Mol Mech Mutagen. 2006;596:166–76.

    Article  Google Scholar 

  45. Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y, et al. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells. 2009;14:775–88.

    Article  CAS  PubMed  Google Scholar 

  46. Ward A, Sivakumar G, Kanjeekal S, Hamm C, Labute BC, Shum D, et al. The deregulated promoter methylation of the Polo-like kinases as a potential biomarker in hematological malignancies. Leuk Lymphoma. 2015;56:2123–33.

    Article  CAS  PubMed  Google Scholar 

  47. Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, et al. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets. 2018;22:59–73. p

    Article  CAS  PubMed  Google Scholar 

  48. Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol. 2001;11:441–6.

    Article  CAS  PubMed  Google Scholar 

  49. Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW, et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet. 2005;37:883–8.

    Article  CAS  PubMed  Google Scholar 

  50. Marina M. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci. 2014;19:352.

    Article  Google Scholar 

  51. Li Z, Dai K, Wang C, Song Y, Gu F, Liu F, et al. Expression of polo-like kinase 4(PLK4) in breast cancer and its response to taxane-based neoadjuvant chemotherapy. J Cancer. 2016;7:1125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mason JM, Lin DC-C, Wei X, Che Y, Yao Y, Kiarash R, et al. Functional Characterization of CFI-400945, a Polo-like Kinase 4 Inhibitor, as a Potential Anticancer Agent. Cancer Cell. 2014;26:163–76. http://linkinghub.elsevier.com/retrieve/pii/S1535610814002219

  53. Kazazian K, Go C, Wu H, Brashavitskaya O, Xu R, Dennis JW, et al. Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton. Cancer Res. 2017;77:434–47.

    Article  CAS  PubMed  Google Scholar 

  54. Fournier M, Tora L. KAT2-mediated PLK4 acetylation contributes to genomic stability by preserving centrosome number. Mol Cell Oncol. 2016;4:e1270391.

  55. Li S, Wang C, Wang W, Liu W, Zhang G. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia. Medicine. 2018;97:1–8.

    Article  Google Scholar 

  56. de Carcer G, Escobar B, Higuero AM, Garcia L, Anson A, Perez G, et al. Plk5, a Polo Box Domain-Only Protein with Specific Roles in Neuron Differentiation and Glioblastoma Suppression. Mol Cell Biol. 2011;31:1225–39.

    Article  PubMed  PubMed Central  Google Scholar 

  57. De Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: Functional evolution of Polo-like kinases. Cell Cycle. 2011;10:2255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krššák M, et al. BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. Curr Biol. 2007;17:316–22.

    Article  CAS  PubMed  Google Scholar 

  59. McArthur K, D’Cruz AA, Segal D, Lackovic K, Wilks AF, O’Donnell JA, et al. Defining a therapeutic window for kinase inhibitors in leukemia to avoid neutropenia. Oncotarget. 2017. http://www.oncotarget.com/fulltext/19678

  60. Münch C, Dragoi D, Frey AV, Thurig K, Lübbert M, Wäsch R, et al. Therapeutic polo-like kinase 1 inhibition results in mitotic arrest and subsequent cell death of blasts in the bone marrow of AML patients and has similar effects in non-neoplastic cell lines. Leuk Res [Internet]. 2015;39:462–70. https://doi.org/10.1016/j.leukres.2015.01.007

    Article  CAS  Google Scholar 

  61. Tao Y-F, Li Z-H, Du W-W, Xu L-X, Ren J-L, Li X-L, et al. Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation. Oncol Rep. 2017;37:1419–29.

  62. Dasmahapatra G, Patel H, Nguyen T, Attkisson E, Grant S. PLK1 inhibitors synergistically potentiate HDAC inhibitor lethality in imatinib mesylate-sensitive or -resistant BCR/ABL+leukemia cells in vitro and in vivo. Clin Cancer Res. 2013;19:404–14.

    Article  CAS  PubMed  Google Scholar 

  63. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15:3094–102.

    Article  CAS  PubMed  Google Scholar 

  64. Talati C, Griffiths EA, Wetzler M, Wang ES. Polo-like kinase inhibitors in hematologic malignancies. Crit Rev Oncol Hematol. 2016;98:200–10. https://doi.org/10.1016/j.critrevonc.2015.10.013

    Article  PubMed  Google Scholar 

  65. Abbou S, Lanvers-Kaminsky CJ, Daudigeos-Dubus E, Dret LE, Laplace-Builhe L, Molenaar C. et al. Polo-like kinase inhibitor volasertib exhibits antitumor activity and synergy with vincristine in pediatric malignancies. Anticancer Res. 2016;36:599–609. http://www.ncbi.nlm.nih.gov/pubmed/26851014

  66. Gorlick R, Kolb EA, Keir ST, Maris JM, Reynolds CP, Kang MH, et al. Initial testing (stage 1) of the polo-like kinase inhibitor volasertib (BI 6727), by the pediatric preclinical testing program. Pediatr Blood Cancer. 2014;61:158–64.

    Article  CAS  PubMed  Google Scholar 

  67. Sparta AM, Bressanin D, Chiarini F, Lonetti A, Cappellini A, Evangelisti C, et al. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle. 2014;13:2237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tontsch-Grunt U, Rudolph D, Waizenegger I, Baum A, Gerlach D, Engelhardt H, et al. Synergistic activity of BET inhibitor BI 894999 with PLK inhibitor volasertib in AML in vitro and in vivo. Cancer Lett. 2018;421:112–20.

    Article  CAS  PubMed  Google Scholar 

  69. Spaniol K, Boos J, Lanvers-Kaminsky C. An in-vitro evaluation of the polo-like kinase inhibitor GW843682X against paediatric malignancies. Anticancer Drugs. 2011;22:531–42.

    Article  CAS  PubMed  Google Scholar 

  70. Valsasina B, Beria I, Alli C, Alzani R, Avanzi N, Ballinari D, et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol Cancer Ther. 2012;11:1006–16.

    Article  CAS  PubMed  Google Scholar 

  71. Casolaro A, Golay J, Albanese C, Ceruti R, Patton V, Cribioli S, et al. The Polo-Like Kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+acute monoblastic leukaemia. PLoS ONE. 2013;8:e58424 Available from https://doi.org/10.1371/journal.pone.0058424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scharow A, Knappe D, Reindl W, Hoffmann R, Berg T. Development of bifunctional inhibitors of polo-like kinase 1 with low-nanomolar activities against the polo-box domain. Chembiochem. 2016;17:759–67.

    Article  CAS  PubMed  Google Scholar 

  73. Reindl W, Yuan J, Krämer A, Strebhardt K, Berg T. A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem. 2009;10:1145–8.

    Article  CAS  PubMed  Google Scholar 

  74. Normandin K, Lavallée J-F, Futter M, Beautrait A, Duchaine J, Guiral S, et al. Identification of Polo-like kinase 1 interaction inhibitors using a novel cell-based assay. Sci Rep. 2016;6:37581. http://www.nature.com/articles/srep37581

  75. Li L, Wang X, Chen J, Ding H, Zhang Y, Hu TC, et al. The natural product Aristolactam AIIIa as a new ligand targeting the polo-box domain of polo-like kinase 1 potently inhibits cancer cell proliferation. Acta Pharmacol Sin. 2009;30:1443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim SM, Chae MK, Lee C, Yim MS, Bang JK, Ryu EK. Enhanced cellular uptake of a TAT-conjugated peptide inhibitor targeting the polo-box domain of polo-like kinase 1. Amino Acids. 2014;46:2595–603.

    Article  CAS  PubMed  Google Scholar 

  77. Archambault V, Normandin K. Several inhibitors of the Plk1 Polo-Box Domain turn out to be non-specific protein alkylators. Cell Cycle. 2017;16:1220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hall MA, Golfman LS, Zweidler-McKay PA. Notch signaling In B-ALL reveals PLK1 as a potential therapeutic target in B-ALL: PLK1-selective inhibitor poloxin modulates Cyclin B and P53 pathways, leading to growth arrest and apoptosis. Blood. 2013;122:2912. http://www.bloodjournal.org/content/122/21/2912.abstract

  79. Meade BR, Gogoi K, Hamil AS, Palm-Apergi C, Van Den Berg A, Hagopian JC, et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol. 2014;32:1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E. et al. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun. 2011;2:395

    Article  PubMed  Google Scholar 

  81. Mross K, Dittrich C, Aulitzky WE, Strumberg D, Schutte J, Schmid RM, et al. A randomised phase II trial of the Polo-like kinase inhibitor BI 2536 in chemo-naïve patients with unresectable exocrine adenocarcinoma of the pancreas – a study within the Central European Society Anticancer Drug Research (CESAR) collaborative network. Br J Cancer. 2012;107:280–6. https://doi.org/10.1038/bjc.2012.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Müller-Tidow C, Bug G, Lübbert M, Krämer A, Krauter J, Valent P, et al. A randomized, open-label, phase I/II trial to investigate the maximum tolerated dose of the Polo-like kinase inhibitor BI 2536 in elderly patients with refractory/relapsed acute myeloid leukaemia. Br J Haematol. 2013;163:214–22.

    PubMed  Google Scholar 

  83. Döhner H, Lübbert M, Fiedler W, Fouillard L, Haaland A, Brandwein JM, et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014;124:1426–33. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148765/

  84. Clinicaltrials.gov. Bethesda (MD): National Library of Medicine (US). Volasertib in combination with low-dose cytarabine in patients aged 65 years and above with previously untreated acute myeloid leukaemia, who are ineligible for intensive remission induction therapy (POLO-AML-2). NCT01721876. 2012 [cited 2018 May 31]. https://clinicaltrials.gov/ct2/show/NCT01721876

  85. Olmos D, Barker D, Sharma R, Brunetto AT, Yap TA, Taegtmeyer AB, et al. Phase I study of GSK461364, a specific and competitive Polo-like kinase 1 inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2011;17:3420–30. http://clincancerres.aacrjournals.org/content/17/10/3420.long4

  86. Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). PCM-075 in combination with either low-dose cytarabine or decitabine in adult patients with acute myeloid leukemia (AML). NCT03303339. 2017 [cited 2018 May 31]. https://clinicaltrials.gov/ct2/show/NCT03303339

  87. Clinicaltrials.gov [Inter net]. Bethesda (MD): National Library of Medicine (US). A Study of CFI-400945 Fumarate in Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome [Internet]. NCT03187288. 2017 [cited 2018 May 31]. https://clinicaltrials.gov/ct2/show/NCT03187288

  88. Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Open dose escalating trial to determine the maximum tolerated dose in paediatric patients with advanced cancers for whom no therapy is known. NCT01971476. 2013 [cited 2018 May 31]. https://clinicaltrials.gov/ct2/show/NCT01971476

  89. EU Clinical Trials Register Clinical trial results: Open, non-controlled, dose escalating Phase I trial to evaluate the pharmacokinetics, pharmacodynamics, tolerability and toxicity of Volasertib in paediatric patients from 2 years to less than 18 ye. EU Clin Trials Regist. 2017:1–65 [EudraCT 2013-001291-38].

  90. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77. http://www.ncbi.nlm.nih.gov/pubmed/24150415

  91. Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). A Study to Determine Safety, Pharmacokinetics and Pharmacodynamics of Intravenous TKM 080301 in Neuroendocrine Tumors (NET) and Adrenocortical Carcinoma (ACC) Patients. NCT01262235. 2010 [cited 2018 Jun 1]. https://clinicaltrials.gov/ct2/show/NCT01262235

  92. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v69–82.

    CAS  PubMed  Google Scholar 

  93. Fey MF, Buske C. Acute myeloblastic leukaemias in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24:138–143.

    Article  Google Scholar 

  94. Chang JE, Medlin SC, Kahl BS, Longo WL, Williams EC, Lionberger J, et al. Augmented and standard Berlin-Frankfurt-Münster chemotherapy for treatment of adult acute lymphoblastic leukemia. Leuk Lymphoma. 2010;49:2298–307.

  95. NCNN Clinical Practice Guidelines in Oncology. Acute myeloid leukemia. Ned Tijdschr Tandheelkd. 2015;109:463–4.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Swedish Foundation for Strategic Research (C.P.A.) and the Swedish Childhood Cancer Foundation (C.P.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Palm-Apergi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goroshchuk, O., Kolosenko, I., Vidarsdottir, L. et al. Polo-like kinases and acute leukemia. Oncogene 38, 1–16 (2019). https://doi.org/10.1038/s41388-018-0443-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0443-5

This article is cited by

Search

Quick links