Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substance P in the medial amygdala regulates aggressive behaviors in male mice

Abstract

Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ca2+ activity of MeATac1 neurons during aggressive and non-social behaviors.
Fig. 2: MeATac1 neurons mediate aggressive behaviors in male mice.
Fig. 3: MeATac1→VMHvl projections regulate aggressive behaviors in male mice.
Fig. 4: SP/NK1-R signaling regulates aggression.
Fig. 5: SP potentiates excitatory transmission in the VMHvl.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8:536–46.

    Article  CAS  PubMed  Google Scholar 

  2. Hoopfer ED. Neural control of aggression in Drosophila. Curr Opin Neurobiol. 2016;38:109–18.

    Article  CAS  PubMed  Google Scholar 

  3. Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23:1317–28.

    Article  CAS  PubMed  Google Scholar 

  4. Falkner AL, Lin D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci. 2014;8:168.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raam T, Hong W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr Opin Neurobiol. 2021;68:124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keshavarzi S, Power JM, Albers EH, Sullivan RK, Sah P. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons. J Neurosci. 2015;35:13020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, et al. Neural dynamics in the limbic system during male social behaviors. Neuron. 2023;111:3288–306.e4.

    Article  CAS  PubMed  Google Scholar 

  8. Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, et al. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci. 2023;26:2131–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong W, Kim DW, Anderson DJ. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell. 2014;158:1348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Unger EK, Burke KJ Jr, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10:453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, et al. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci. 2020;40:4858–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci. 2016;19:734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The tachykinin peptide family. Pharmacol Rev. 2002;54:285–322.

    Article  CAS  PubMed  Google Scholar 

  14. Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA. 1987;84:881–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci. 1993;13:2273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicoll RA, Schenker C, Leeman SE. Substance P as a transmitter candidate. Annu Rev Neurosci. 1980;3:227–68.

    Article  CAS  PubMed  Google Scholar 

  17. Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993;73:229–308.

    Article  CAS  PubMed  Google Scholar 

  18. Commons KG. Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 2010;1314:175–82.

    Article  CAS  PubMed  Google Scholar 

  19. He ZX, Yin YY, Xi K, Xing ZK, Cao JB, Liu TY, et al. Nucleus Accumbens Tac1-Expressing Neurons Mediate Stress-Induced Anhedonia-like Behavior in Mice. Cell Rep. 2020;33:108343.

    Article  CAS  PubMed  Google Scholar 

  20. He ZX, Xi K, Liu KJ, Yue MH, Wang Y, Yin YY, et al. A Nucleus Accumbens Tac1 Neural Circuit Regulates Avoidance Responses to Aversive Stimuli. Int J Mol Sci. 2023;24:4346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khom S, Steinkellner T, Hnasko TS, Roberto M. Alcohol dependence potentiates substance P/neurokinin-1 receptor signaling in the rat central nucleus of amygdala. Sci Adv. 2020;6:eaaz1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Z, Yang Y, Walker DL, Davis M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology. 2009;34:331–40.

    Article  CAS  PubMed  Google Scholar 

  23. Ebner K, Rupniak NM, Saria A, Singewald N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA. 2004;101:4280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C. The involvement of substance P in the induction of aggressive behavior. Peptides. 2009;30:1586–91.

    Article  CAS  PubMed  Google Scholar 

  25. Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:91–140.

    Article  CAS  PubMed  Google Scholar 

  26. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, Eyjolfsdottir EA, et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell. 2014;156:221–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaikh MB, Steinberg A, Siegel A. Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res. 1993;625:283–94.

    Article  CAS  PubMed  Google Scholar 

  28. Han Y, Shaikh MB, Siegel A. Medial amygdaloid suppression of predatory attack behavior in the cat: I Role of a substance P pathway from the medial amygdala to the medial hypothalamus. Brain Res. 1996;716:59–71.

    Article  CAS  PubMed  Google Scholar 

  29. Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J. Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area. Eur J Pharmacol. 2009;611:35–43.

    Article  CAS  PubMed  Google Scholar 

  30. De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392:394–7.

    Article  PubMed  Google Scholar 

  31. He ZX, Song HF, Liu TY, Ma J, Xing ZK, Yin YY, et al. HuR in the Medial Prefrontal Cortex is Critical for Stress-Induced Synaptic Dysfunction and Depressive-Like Symptoms in Mice. Cereb Cortex. 2019;29:2737–47.

    Article  PubMed  Google Scholar 

  32. Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, et al. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron. 2015;87:1063–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Frontiers in neural circuits. 2014;8:76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci. 2016;19:596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al. Esr1(+) cells in the ventromedial hypothalamus control female aggression. Nat Neurosci. 2017;20:1580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Falkner AL, Wei D, Song A, Watsek LW, Chen I, Chen P, et al. Hierarchical Representations of Aggression in a Hypothalamic-Midbrain Circuit. Neuron. 2020;106:637–48.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang CH, Gean PW. The ventral hippocampus controls stress-provoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep. 2019;28:1195–1205.e3.

    Article  CAS  PubMed  Google Scholar 

  38. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. 2016;92:372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai NY, Wang F, Toma K, Yin C, Takatoh J, Pai EL, et al. Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin. Nat Neurosci. 2022;25:659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Masterson SP, Li J, Bickford ME. Frequency-dependent release of substance P mediates heterosynaptic potentiation of glutamatergic synaptic responses in the rat visual thalamus. J Neurophysiol. 2010;104:1758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shen CJ, Zheng D, Li KX, Yang JM, Pan HQ, Yu XD, et al. Cannabinoid CB(1) receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med. 2019;25:337–49.

    Article  CAS  PubMed  Google Scholar 

  42. Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-Frequency Activation of Nucleus Accumbens D1-MSNs Drives Excitatory Potentiation on D2-MSNs. Neuron. 2019;103:432–44.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chi CC, Flynn JP. Neural pathways associated with hypothalamically elicited attach behavior in cats. Science. 1971;171:703–6.

    Article  CAS  PubMed  Google Scholar 

  44. Chi CC, Flynn JP. Neuroanatomic projections related to biting attack elicited from hypothalamus in cats. Brain Res. 1971;35:49–66.

    Article  CAS  PubMed  Google Scholar 

  45. Ricciardi KH, Blaustein JD. Projections from ventrolateral hypothalamic neurons containing progestin receptor- and substance P-immunoreactivity to specific forebrain and midbrain areas in female guinea pigs. J Neuroendocrinol. 1994;6:135–44.

    Article  CAS  PubMed  Google Scholar 

  46. Chen PB, Hu RK, Wu YE, Pan L, Huang S, Micevych PE, et al. Sexually Dimorphic Control of Parenting Behavior by the Medial Amygdala. Cell. 2019;176:1206–21.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci. 2017;11:94.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee H, Kim DW, Remedios R, Anthony TE, Chang A, Madisen L, et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature. 2014;509:627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Falkner AL, Dollar P, Perona P, Anderson DJ, Lin D. Decoding ventromedial hypothalamic neural activity during male mouse aggression. J Neurosci. 2014;34:5971–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stagkourakis S, Spigolon G, Williams P, Protzmann J, Fisone G, Broberger C. A neural network for intermale aggression to establish social hierarchy. Nat Neurosci. 2018;21:834–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the STI 2030—Major Projects 2021ZD0204000 (2021ZD0204003) and the National Natural Science Foundation of China (32071018).

Author information

Authors and Affiliations

Authors

Contributions

ZXH designed and conducted all the experiments; KJL and MHY carried out the calcium imaging, behavioral tests and immunohistochemistry work; YW, KX, JYQ, XYL and KJL conducted the virus experiments; JNF, YXZ, XXH and HLY helped collect the data; ZXH and XJZ cowrote the article; ZXH and XJZ supervised all aspects of the project.

Corresponding author

Correspondence to Xiao-Juan Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZX., Yue, MH., Liu, KJ. et al. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01863-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01863-w

Search

Quick links