Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early life stress moderates the relation between systemic inflammation and neural activation to reward in adolescents both cross-sectionally and longitudinally

Abstract

Elevated levels of systemic inflammation are associated with altered reward-related brain function in ventral striatal areas of the brain like the nucleus accumbens (NAcc). In adolescents, cross-sectional research indicates that exposure to early life stress (ELS) can moderate the relation between inflammation and neural activation, which may contribute to atypical reward function; however, no studies have tested whether this moderation by ELS of neuroimmune associations persists over time. Here, we conducted a cross-sectional analysis and the first exploratory longitudinal analysis testing whether cumulative severity of ELS moderates the association of systemic inflammation with reward-related processing in the NAcc in adolescents (n = 104; 58F/46M; M[SD] age = 16.00[1.45] years; range = 13.07–19.86 years). For the cross-sectional analysis, we modeled a statistical interaction between ELS and levels of C-reactive protein (CRP) predicting NAcc activation during the anticipation and outcome phases of a monetary reward task. We found that higher CRP was associated with blunted NAcc activation during the outcome of reward in youth who experienced higher levels of ELS (β = –0.31; p = 0.006). For the longitudinal analysis, we modeled an interaction between ELS and change in CRP predicting change in NAcc activation across 2 years. This analysis similarly showed that increasing CRP over time was associated with decreasing NAcc during reward outcomes in youth who experienced higher levels of ELS (β = –0.47; p = 0.022). Both findings support contemporary theoretical frameworks involving associations among inflammation, reward-related brain function, and ELS exposure, and suggest that experiencing ELS can have significant and enduring effects on neuroimmune function and adolescent neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bilateral nucleus accumbens (NAcc) mask.
Fig. 2: ELS and CRP interaction.
Fig. 3: ELS and CRP longitudinal interaction.

Similar content being viewed by others

References

  1. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-α. Biol Psychiatry. 2004;56:819–24.

    Article  PubMed  CAS  Google Scholar 

  3. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Konsman JP, Parnet P, Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 2002;25:154–9.

    Article  PubMed  CAS  Google Scholar 

  5. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774–815.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021;21:526–41.

    Article  PubMed  CAS  Google Scholar 

  7. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42:216–41.

    Article  PubMed  CAS  Google Scholar 

  8. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69:1044–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68:748–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21:1358–65.

    Article  PubMed  CAS  Google Scholar 

  11. Eisenberger NI, Moieni M. Inflammation affects social experience: implications for mental health. World Psychiatry. 2020;19:109–10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Inagaki TK, Muscatell KA, Irwin MR, Moieni M, Dutcher JM, Jevtic I, et al. The role of the ventral striatum in inflammatory-induced approach toward support figures. Brain Behav Immun. 2015;44:247–52.

    Article  PubMed  Google Scholar 

  13. Muscatell KA, Moieni M, Inagaki TK, Dutcher JM, Jevtic I, Breen EC, et al. Exposure to an inflammatory challenge enhances neural sensitivity to negative and positive social feedback. Brain Behav Immun. 2016;57:21–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swartz JR, Carranza AF, Tully LM, Knodt AR, Jiang J, Irwin MR, et al. Associations between peripheral inflammation and resting state functional connectivity in adolescents. Brain Behav Immun. 2021;95:96–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Irwin MR, Eisenberger NI. Context-dependent effects of inflammation: reduced reward responding is not an invariant outcome of sickness. Neuropsychopharmacol. 2017;42:785–6.

    Article  CAS  Google Scholar 

  16. McLaughlin KA, Greif Green J, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC. Childhood adversities and first onset of psychiatric disorders in a National Sample of US adolescents. Arch Gen Psychiatry. 2012;69:1151–60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation-related functional and structural dysconnectivity as a pathway to psychopathology. Biol Psychiatry. 2023;93:405–18.

    Article  PubMed  CAS  Google Scholar 

  18. Lumertz FS, Kestering-Ferreira E, Orso R, Creutzberg KC, Tractenberg SG, Stocchero BA, et al. Effects of early life stress on brain cytokines: a systematic review and meta-analysis of rodent studies. Neurosci Biobehav Rev. 2022;139:104746.

    Article  PubMed  CAS  Google Scholar 

  19. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological Bull. 2004;130:601–30.

    Article  Google Scholar 

  20. Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun. 2007;21:901–12.

    Article  PubMed  CAS  Google Scholar 

  21. Slopen N, Kubzansky LD, McLaughlin KA, Koenen KC. Childhood adversity and inflammatory processes in youth: a prospective study. Psychoneuroendocrinology. 2013;38:188–200.

    Article  PubMed  Google Scholar 

  22. Danese A, Caspi A, Williams B, Ambler A, Sugden K, Mika J, et al. Biological embedding of stress through inflammation processes in childhood. Mol Psychiatry. 2011;16:244–6.

    Article  PubMed  CAS  Google Scholar 

  23. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl Acad. Sci. USA. 2007;104:1319–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pechtel P, Pizzagalli DA. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology. 2011;214:55–70.

    Article  PubMed  CAS  Google Scholar 

  25. Dillon DG, Holmes AJ, Birk JL, Brooks N, Lyons-Ruth K, Pizzagalli DA. Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biol Psychiatry. 2009;66:206–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res. 2018;101:80–103.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nusslock R, Miller GE. Early-life adversity and physical and emotional health across the lifespan: a neuroimmune network hypothesis. Biol Psychiatry. 2016;80:23–32.

    Article  PubMed  Google Scholar 

  28. Kuhlman KR, Cole SW, Irwin MR, Craske MG, Fuligni AJ, Bower JE. The role of early life adversity and inflammation in stress-induced change in reward and risk processes among adolescents. Brain Behav Immun. 2023;109:78–88.

    Article  PubMed  CAS  Google Scholar 

  29. Chat IK, Gepty AA, Kautz M, Mac Giollabhui N, Adogli ZV, Coe CL, et al. Residence in high-crime neighborhoods moderates the association between interleukin 6 and social and nonsocial reward brain responses. Biol Psychiatry Glob Open Sci. 2022;2:273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miller GE, White SF, Chen E, Nusslock R. Association of inflammatory activity with larger neural responses to threat and reward among children living in poverty. Am J Psychiatry. 2021;178:313–20.

    Article  PubMed  Google Scholar 

  31. Chiang JJ, Lam PH, Chen E, Miller GE. Psychological stress during childhood and adolescence and its association with inflammation across the lifespan: a critical review and meta-analysis. Psychol Bull. 2022;148:27–66.

    Article  Google Scholar 

  32. Galván A. Adolescent brain development and contextual influences: a decade in review. J Res Adolescence. 2021;31:843–69.

    Article  Google Scholar 

  33. Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of early life stress on reward circuit function and regulation. Front Psychiatry. 2021;12:744690.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morris NM, Udry JR. Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolescence. 1980;9:271–80.

    Article  CAS  Google Scholar 

  35. Ribbe D. Psychometric review of traumatic event screening instrument forchildren (TESI-C). In: Stamm BH, editor. Measurement of Stress, Trauma, and Adaptation. Lutherville, MD: Sidran Press; 1996. pp. 386–387.

  36. Rudolph KD, Hammen C, Burge D, Lindberg N, Herzberg D, Daley SE. Toward an interpersonal life-stress model of depression: the developmental context of stress generation. Dev Psychopathol. 2000;12:215–34.

    Article  PubMed  CAS  Google Scholar 

  37. King LS, Colich NL, LeMoult J, Humphreys KL, Ordaz SJ, Price AN, et al. The impact of the severity of early life stress on diurnal cortisol: the role of puberty. Psychoneuroendocrinology. 2017;77:68–74.

    Article  PubMed  CAS  Google Scholar 

  38. King LS, Graber MG, Colich NL, Gotlib IH. Associations of waking cortisol with DHEA and testosterone across the pubertal transition: effects of threat-related early life stress. Psychoneuroendocrinology. 2020;115:104651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ho TC, Kulla A, Teresi GI, Sisk LM, Rosenberg-Hasson Y, Maecker HT, et al. Inflammatory cytokines and callosal white matter microstructure in adolescents. Brain Behav Immun. 2022;100:321–31.

    Article  PubMed  CAS  Google Scholar 

  40. Yuan JP, Ho TC, Coury SM, Chahal R, Colich NL, Gotlib IH. Early life stress, systemic inflammation, and neural correlates of implicit emotion regulation in adolescents. Brain Behav Immun. 2022;105:169–79.

    Article  PubMed  CAS  Google Scholar 

  41. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:RC159–RC159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gotlib IH, Hamilton JP, Cooney RE, Singh MK, Henry ML, Joormann J. Neural processing of reward and loss in girls at risk for major depression. Arch Gen Psychiatry. 2010;67:380–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Leong JK, Ho TC, Colich NL, Sisk L, Knutson B, Gotlib IH. White-matter tract connecting anterior insula to nucleus accumbens predicts greater future motivation in adolescents. Dev Cogn Neurosci. 2021;47:100881.

    Article  PubMed  Google Scholar 

  44. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage. 1999;9:179–94.

    Article  PubMed  CAS  Google Scholar 

  45. Esteban O, Ciric R, Finc K, Blair RW, Markiewicz CJ, Moodie CA, et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat Protoc. 2020;15:2186–2202.

  46. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6.

    Article  PubMed  CAS  Google Scholar 

  47. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54:313–27.

    Article  PubMed  Google Scholar 

  48. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320–41.

    Article  PubMed  Google Scholar 

  49. Smyser CD, Snyder AZ, Neil JJ. Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain. NeuroImage. 2011;56:1437–52.

    Article  PubMed  Google Scholar 

  50. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–S219.

    Article  PubMed  Google Scholar 

  51. Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage. 2001;14:1370–86.

    Article  PubMed  CAS  Google Scholar 

  52. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37:90–101.

    Article  PubMed  Google Scholar 

  53. Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, et al. Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Hum Brain Mapp. 2014;35:1981–96.

    Article  PubMed  Google Scholar 

  54. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  55. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

  56. Aiken LS, West SG, Reno RR. Multiple regression: testing and interpreting interactions. SAGE Publications, Inc. In Thousand Oaks, CA; 1991.

  57. Johnson PO, Neyman J. Tests of certain linear hypotheses and their application to some educational problems. Stat Res Mem. 1936;1:57–93.

    Google Scholar 

  58. Reynolds WM. The reynolds adolescent depression scale-second edition (RADS-2). In: Comprehensive handbook of psychological assessment, vol. 2: personality assessment. John Wiley & Sons, Inc. in Hoboken, New Jersey; 2004. p. 224–36.

  59. Neurauter G, Schröcksnadel K, Scholl-Bürgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, et al. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab. 2008;9:622–7.

    Article  PubMed  CAS  Google Scholar 

  60. Chat IK, Nusslock R, Moriarity DP, Bart CP, Mac Giollabhui N, Damme K, et al. Goal-striving tendencies moderate the relationship between reward-related brain function and peripheral inflammation. Brain Behav Immun. 2021;94:60–70.

    Article  PubMed  CAS  Google Scholar 

  61. Chahal R, Miller JG, Yuan JP, Buthmann JL, Gotlib IH. An exploration of dimensions of early adversity and the development of functional brain network connectivity during adolescence: Implications for trajectories of internalizing symptoms. Dev Psychopathol. 2022;1–15.

  62. McLaughlin KA, Weissman D, Bitrán D. Childhood adversity and neural development: a systematic review. Annu Rev Dev Psychol 2019;1:277–312.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26:507–13.

    Article  PubMed  CAS  Google Scholar 

  64. Spear LP. Rewards, aversions and affect in adolescence: emerging convergences across laboratory animal and human data. Dev Cogn Neurosci. 2011;1:390–403.

    Article  PubMed Central  Google Scholar 

  65. Schreuders E, Braams BR, Blankenstein NE, Peper JS, Güroğlu B, Crone EA. Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child Dev. 2018;89:797–810.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Braams BR, van Duijvenvoorde ACK, Peper JS, Crone EA. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J Neurosci. 2015;35:7226–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hoogendam JM, Kahn RS, Hillegers MHJ, van Buuren M, Vink M. Different developmental trajectories for anticipation and receipt of reward during adolescence. Dev Cogn Neurosci. 2013;6:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Anna Cichocki, Lauren Costello, Miranda Edwards, Jordan Garcia, Abigail Graber, Madelaine Graber, Melissa Hansen, Emma Jaeger, Julian Joachimsthaler, Vanessa Lopez, Amar Ojha, Holly Pham, Michelle Sanabria, Jill Segarra, Lucinda Sisk, Alexess Sosa, Megan Strickland, Giana Teresi, Johanna Walker, and Rachel Weisenburger for their assistance in data collection and management. We also thank Yael Rosenberg-Hasson and Holden Maecker for their assistance with the dried blood spot protocol. Finally, we thank all our participants and their families for participating in this research.

Funding

This research was supported by grants from the National Institute of Mental Health (R37MH101495 to IHG and K01MH117442 to TCH), the Stanford University Precision Health and Integrated Diagnostics (PHIND) Center (to IHG and TCH), the Stanford Institute for Research in the Social Sciences (IRiSS), the Stanford Psychology Norman Anderson Fund, and the National Science Foundation Graduate Research Fellowship Program (NSF GRFP) (all to JPY).

Author information

Authors and Affiliations

Authors

Contributions

JPY and IHG designed the study, JPY led the data processing and analysis, and writing; SMC contributed to data collection and processing, and TCH helped with data analysis and interpretation. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Justin P. Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J.P., Coury, S.M., Ho, T.C. et al. Early life stress moderates the relation between systemic inflammation and neural activation to reward in adolescents both cross-sectionally and longitudinally. Neuropsychopharmacol. 49, 532–540 (2024). https://doi.org/10.1038/s41386-023-01708-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01708-y

Search

Quick links