Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development

Abstract

Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer–promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type–specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 7q11.23 deletion promotes genome-wide aberrations in the human frontal cortex DNA methylation landscape.
Fig. 2: The assocciation between 7q11.23 deletion, aberrant DNA methylation and TF binding.
Fig. 3: Consulting the human brain interactome to map aberrant methylation of regulatory elements and their target genes.
Fig. 4: Abnormal methylation patterns in individuals with WS are associated with genes involved in myelination and glia differentiation.
Fig. 5: Cell type–specific methylation analysis reveals aberrant patterns in individuals with WS, predominantly in active neuron enhancers.
Fig. 6: A comparison of methylated risk loci between brain and blood samples from individuals with WS identified three major gene clusters.

Similar content being viewed by others

References

  1. Morris CA. Introduction: Williams syndrome. Am J Med Genet Part C: Semin Med Genet. 2010;154C:203–8.

    PubMed  Google Scholar 

  2. Pober BR. Williams–Beuren Syndrome. N. Engl J Med. 2010;362:239–52.

    CAS  PubMed  Google Scholar 

  3. Kozel BA, Barak B, Kim CA, Mervis CB, Osborne LR, Porter M, et al. Williams syndrome. Nat Rev Dis Primers. 2021;7:42.

  4. Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci. 2016;19:647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zanella M, Vitriolo A, Andirko A, Martins PT, Sturm S, O’Rourke T, et al. Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. Sci Adv. 2019;5:eaaw7908.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cha SG, Song MK, Lee SY, Kim GB, Kwak JG, Kim WH, et al. Long-term cardiovascular outcome of Williams syndrome. Congenit Heart Dis. 2019;14:684–90.

    PubMed  Google Scholar 

  7. Del Pasqua A, Rinelli G, Toscano A, Iacobelli R, Digilio C, Marino B, et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol Young-. 2009;19:563–7.

    PubMed  Google Scholar 

  8. Collins RT II. Cardiovascular disease in Williams syndrome. Curr Opin Pediatr. 2018;30:609–15.

    PubMed  Google Scholar 

  9. Pober BR, Wang E, Caprio S, Petersen KF, Brandt C, Stanley T, et al. High prevalence of diabetes and pre-diabetes in adults with Williams syndrome. Am J Med Genet Part C: Semin Med Genet. 2010;154C:291–8.

    CAS  PubMed  Google Scholar 

  10. Andersson SA, Olsson AH, Esguerra JLS, Heimann E, Ladenvall C, Edlund A, et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol. 2012;364:36–45.

    CAS  PubMed  Google Scholar 

  11. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, et al. LIM-kinase1 Hemizygosity Implicated in Impaired Visuospatial Constructive Cognition. Cell. 1996;86:59–69.

    CAS  PubMed  Google Scholar 

  12. Greiner de Magalhães C, Pitts CH, Mervis CB. Executive function as measured by the Behavior Rating Inventory of Executive Function-2: children and adolescents with Williams syndrome. J Intellect Disabil Res. 2022;66:94–107.

    PubMed  Google Scholar 

  13. Mervis CB, John AE. Cognitive and behavioral characteristics of children with Williams syndrome: Implications for intervention approaches. Am J Med Genet Part C: Semin Med Genet. 2010;154C:229–48.

    PubMed  Google Scholar 

  14. Miezah D, Porter M, Rossi A, Kazzi C, Batchelor J, Reeve J. Cognitive profile of young children with Williams syndrome. J Intellect Disabil Res. 2021;65:784–94.

    CAS  PubMed  Google Scholar 

  15. Meyer-Lindenberg A, Mervis CB, Faith Berman K. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7:380–93.

    CAS  PubMed  Google Scholar 

  16. Morris CA, Braddock SR, Council On G, Chen E, Trotter TL, Berry SA, et al. Health care supervision for children with Williams Syndrome. Pediatrics. 2020;145:2019–3761.

    Google Scholar 

  17. Martens MA, Wilson SJ, Reutens DC. Research Review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. J Child Psychol Psychiatry. 2008;49:576–608.

    PubMed  Google Scholar 

  18. Sanders StephanJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MichaelT, Moreno-De-Luca D, et al. Multiple recurrent De Novo CNVs, Including duplications of the 7q11.23 Williams Syndrome Region, are strongly associated with Autism. Neuron. 2011;70:863–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Crespi BJ, Procyshyn TL. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neurosci Biobehav Rev. 2017;79:14–26.

    CAS  PubMed  Google Scholar 

  20. Mulle JG, Pulver AE, McGrath JA, Wolyniec PS, Dodd AF, Cutler DJ, et al. Reciprocal duplication of the Williams-Beuren Syndrome deletion on chromosome 7q11.23 is associated with Schizophrenia. Biol Psychiatry. 2014;75:371–7.

    CAS  PubMed  Google Scholar 

  21. Barak B, Zhang Z, Liu Y, Nir A, Trangle SS, Ennis M, et al. Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat Neurosci. 2019;22:700–8.

    CAS  PubMed  Google Scholar 

  22. Strong E, Butcher DT, Singhania R, Mervis CB, Morris CA, Carvalho DD, et al. Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23. Am J Hum Genet. 2015;97:216–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimura R, Lardenoije R, Tomiwa K, Funabiki Y, Nakata M, Suzuki S, et al. Integrated DNA methylation analysis reveals a potential role for ANKRD30B in Williams syndrome. Neuropsychopharmacology. 2020;45:1627–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nir A, Barak B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia. 2021;69:5–19.

    PubMed  Google Scholar 

  25. Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, et al. Altered white matter and microRNA expression in a murine model related to Williams Syndrome suggests that miR-34b/c affects brain development via Ptpru and Dcx Modulation. Cells. 2022;11:158.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    CAS  PubMed  Google Scholar 

  28. Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. Brain cell type–specific enhancer–promoter interactome maps and disease-risk association. Science. 2019;366:1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    CAS  PubMed  Google Scholar 

  30. Cho KS, Elizondo LI, Boerkoel CF. Advances in chromatin remodeling and human disease. Curr Opin Genet Dev. 2004;14:308–15.

    CAS  PubMed  Google Scholar 

  31. Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.

    PubMed  PubMed Central  Google Scholar 

  32. Culver-Cochran AE, Chadwick BP. Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics. 2013;14:740.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jangani M, Poolman TM, Matthews L, Yang N, Farrow SN, Berry A, et al. The Methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J Biol Chem. 2014;289:8931–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.

    CAS  PubMed  Google Scholar 

  35. Peña-Hernández R, Marques M, Hilmi K, Zhao T, Saad A, Alaoui-Jamali MA, et al. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I. Proc Natl Acad Sci USA. 2015;112:E677–86.

    PubMed  PubMed Central  Google Scholar 

  36. Lazebnik MB, Tussie-Luna MI, Roy AL. Determination and functional analysis of the consensus binding site for TFII-I family member BEN, implicated in Williams-Beuren syndrome. J Biol Chem. 2008;283:11078–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Makeyev AV, Bayarsaihan D. ChIP-Chip Identifies SEC23A, CFDP1, and NSD1 as TFII-I Target Genes in Human Neural Crest Progenitor Cells. Cleft Palate Craniofac J. 2013;50:347–50.

    PubMed  Google Scholar 

  38. Bayarsaihan D, Makeyev AV, Enkhmandakh B. Epigenetic modulation by TFII-I during embryonic stem cell differentiation. J Cell Biochem. 2012;113:3056–60.

    CAS  PubMed  Google Scholar 

  39. Bayarsaihan D. What role does TFII-I have to play in epigenetic modulation during embryogenesis? Epigenomics. 2013;5:9–11.

    CAS  PubMed  Google Scholar 

  40. Roy AL. Role of the multifunctional transcription factor TFII-I in DNA damage repair. DNA Repair. 2021;106:103175.

    CAS  PubMed  Google Scholar 

  41. Makeyev AV, Enkhmandakh B, Hong SH, Joshi P, Shin DG, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS One. 2012;7:e44443.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tussié-Luna MI, Bayarsaihan D, Seto E, Ruddle FH, Roy AL. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxβ. Proc Natl Acad Sci. 2002;99:12807–12.

    PubMed  PubMed Central  Google Scholar 

  43. Crusselle-Davis VJ, Zhou Z, Anantharaman A, Moghimi B, Dodev T, Huang S, et al. Recruitment of coregulator complexes to the β-globin gene locus by TFII-I and upstream stimulatory factor. FEBS J. 2007;274:6065–73.

    CAS  PubMed  Google Scholar 

  44. Hakimi M-A, Dong Y, Lane WS, Speicher DW, Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of Histone Deacetylase-containing complexes. J Biol Chem. 2003;278:7234–9.

    CAS  PubMed  Google Scholar 

  45. Pacaud R, Sery Q, Oliver L, Vallette FM, Tost J, Cartron P-F. DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: Role of the DNMT3L/DNMT3B/p65-NFκB complex in the (de-)methylation of TRAF1. Biochimie. 2014;104:36–49.

    CAS  PubMed  Google Scholar 

  46. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.

    CAS  PubMed  Google Scholar 

  47. Yao B, Christian KM, He C, Jin P, Ming G-l, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 2016;17:537–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.

    CAS  PubMed  Google Scholar 

  49. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    CAS  PubMed  Google Scholar 

  50. Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S, et al. Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep. 2016;15:748–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci. 2010;33:193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Moyon S, Hernandez M, Casaccia P. Epigenetic control of oligodendrocyte development: adding new players to old keepers. Curr Opin Neurobiol. 2016;39:133–8.

    PubMed  PubMed Central  Google Scholar 

  53. Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, et al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet. 2018;102:156–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Corley MJ, Vargas-Maya N, Pang APS, Lum-Jones A, Li D, Khadka V, et al. Epigenetic delay in the neurodevelopmental trajectory of DNA methylation states in autism spectrum disorders. Front Genet. 2019;10:907.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Godler DE, Amor DJ. DNA methylation analysis for screening and diagnostic testing in neurodevelopmental disorders. Essays Biochem. 2019;63:785–95.

    CAS  PubMed  Google Scholar 

  56. Moyon S, Ma D, Huynh JL, Coutts DJC, Zhao C, Casaccia P, et al. Efficient remyelination requires DNA methylation. eNeuro. 2017;4:ENEURO.0336-16.2017.

    PubMed  PubMed Central  Google Scholar 

  57. Moyon S, Casaccia P. DNA methylation in oligodendroglial cells during developmental myelination and in disease. Neurogenesis (Austin). 2017;4:e1270381.

    PubMed  Google Scholar 

  58. Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci. 2015;35:352–65.

    PubMed  PubMed Central  Google Scholar 

  59. Huynh JL, Casaccia P. Defining the chromatin landscape in demyelinating disorders. Neurobiol Dis. 2010;39:47–52.

    CAS  PubMed  Google Scholar 

  60. Liu J, Sandoval J, Doh ST, Cai L, López-Rodas G, Casaccia P. Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS One. 2010;5:e13023.

    PubMed  PubMed Central  Google Scholar 

  61. Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8:148.

    PubMed  PubMed Central  Google Scholar 

  62. Wang Z, Tang B, He Y, Jin P. DNA methylation dynamics in neurogenesis. Epigenomics. 2016;8:401–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.

    CAS  PubMed  Google Scholar 

  64. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19:862–71.

    CAS  PubMed  Google Scholar 

  65. Numata S, Ye T, Herman M, Lipska BK. DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia. Front Genet. 2014;5:280.

    PubMed  PubMed Central  Google Scholar 

  66. Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. Chapter Four - The Transcription Factor Zif268/Egr1, Brain Plasticity, and Memory, in Progress in Molecular Biology and Translational Science, ZU Khan and EC Muly, Editors. 2014, Academic Press. 89–129.

  67. O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73.

    PubMed  Google Scholar 

  68. Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet. 2012;131:1687–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee B-K, Iyer VR. Genome-wide studies of CCCTC-binding Factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem. 2012;287:30906–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Semick SA, Bharadwaj RA, Collado-Torres L, Tao R, Shin JH, Deep-Soboslay A, et al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimerʼs disease. Acta Neuropathol. 2019;137:557–69.

  71. Marin-Husstege M, He Y, Li J, Kondo T, Sablitzky F, Casaccia-Bonnefil P. Multiple roles of Id4 in developmental myelination: Predicted outcomes and unexpected findings. Glia. 2006;54:285–96.

    PubMed  Google Scholar 

  72. Kondo T, Raff M. The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J. 2000;19:1998–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guillemain A, Laouarem Y, Cobret L, Štefok D, Chen W, Bloch S, et al. LINGO family receptors are differentially expressed in the mouse brain and form native multimeric complexes. FASEB J. 2020;34:13641–53.

    CAS  PubMed  Google Scholar 

  74. Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13:1228–33.

    CAS  PubMed  Google Scholar 

  75. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.

    CAS  PubMed  Google Scholar 

  76. Chen Y, Pal B, Visvader JE, Smyth GK. Differential methylation analysis of reduced representation bisulfite sequencing experiments using edgeR. F1000Research. 2017;6:2055.

    PubMed  Google Scholar 

  77. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Spindola LM, Santoro ML, Pan PM, Ota VK, Xavier G, Carvalho CM, et al. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin Epigenetics. 2019;11:146.

    PubMed  PubMed Central  Google Scholar 

  79. Jeong H, Mendizabal I, Berto S, Chatterjee P, Layman T, Usui N, et al. Evolution of DNA methylation in the human brain. Nat Commun. 2021;12:2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics. 2006;7:67–80.

    CAS  PubMed  Google Scholar 

  82. Lin A, Wang RT, Ahn S, Park CC, Smith DJ. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res. 2010;20:1122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beckmann AM, Wilce PA. Egr transcription factors in the nervous system. Neurochemistry Int. 1997;31:477–510.

    CAS  Google Scholar 

  84. Kim SH, Song JY, Joo EJ, Lee KY, Shin SY, Lee YH, et al. Genetic association of the EGR2 gene with bipolar disorder in Korea. Exp Mol Med. 2012;44:121–9.

    CAS  PubMed  Google Scholar 

  85. Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ. A screen for genes induced in the suprachiasmatic nucleus by light. Science. 1998;279:1544–7.

    CAS  PubMed  Google Scholar 

  86. Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics. 2006;7:118.

    PubMed  PubMed Central  Google Scholar 

  87. Wang T, Xiong J-Q. The orphan nuclear receptor TLX/NR2E1 in neural stem cells and diseases. Neurosci Bull. 2016;32:108–14.

    PubMed  PubMed Central  Google Scholar 

  88. Zhang C-L, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature. 2008;451:1004–7.

    CAS  PubMed  Google Scholar 

  89. Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, et al. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet Part B: Neuropsychiatr Genet. 2008;147B:880–9.

    CAS  Google Scholar 

  90. O’Leary JD, Kozareva DA, Hueston CM, O’Leary OF, Cryan JF, Nolan YM. The nuclear receptor Tlx regulates motor, cognitive and anxiety-related behaviours during adolescence and adulthood. Behav Brain Res. 2016;306:36–47.

    PubMed  Google Scholar 

  91. Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, et al. The Transcription Factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep. 2017;20:1319–34.

    CAS  PubMed  Google Scholar 

  92. Thumfart KM, Jawaid A, Bright K, Flachsmann M, Mansuy IM. Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci Biobehav Rev. 2022;132:1049–66.

    CAS  PubMed  Google Scholar 

  93. Day JJ, Kennedy AJ, Sweatt JD. DNA Methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu Rev Pharmacol Toxicol. 2015;55:591–611.

    CAS  PubMed  Google Scholar 

  94. Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci. 2005;7:103–23.

    PubMed  PubMed Central  Google Scholar 

  95. Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci. 2016;17:681–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet. 2020;21:207–26.

    CAS  PubMed  Google Scholar 

  97. Bernstein BE, Stamatoyannopoulos Ja, Costello Jf, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28:1045–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159:1511–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, et al. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics. 2017;18:724.

    PubMed  PubMed Central  Google Scholar 

  101. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:3248.

    Google Scholar 

  102. Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto I, et al. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun. 2017;8:1011.

    PubMed  PubMed Central  Google Scholar 

  103. Pott S, Lieb JD. What are super-enhancers? Nat Genet. 2015;47:8–12.

    CAS  PubMed  Google Scholar 

  104. Simons M, Trajkovic K. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci. 2006;119:4381–9.

    CAS  PubMed  Google Scholar 

  105. Barres BA, Schmid R, Sendnter M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development. 1993;118:283–95.

    CAS  PubMed  Google Scholar 

  106. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience. 2014;276:29–47.

    CAS  PubMed  Google Scholar 

  108. Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S. Induction of Olig2+ precursors by FGF involves BMP signalling blockade at the smad level. PLOS ONE. 2008;3:e2863.

    PubMed  PubMed Central  Google Scholar 

  109. Michailov Galin V, Sereda Michael W, Brinkmann Bastian G, Fischer Tobias M, Haug B, Birchmeier C, et al. Axonal Neuregulin-1 regulates myelin sheath thickness. Science. 2004;304:700–3.

    CAS  PubMed  Google Scholar 

  110. Xiao J, Ferner AH, Wong AW, Denham M, Kilpatrick TJ, Murray SS. Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochemistry. 2012;122:1167–80.

    CAS  Google Scholar 

  111. Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2010;18:186–202.

    CAS  PubMed  Google Scholar 

  112. Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;75:1317–31.

    CAS  PubMed  Google Scholar 

  113. Santagati F, Minoux M, Ren S-Y, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development. 2005;132:4927–36.

    CAS  PubMed  Google Scholar 

  114. Tavella S, Bobola N. Expressing Hoxa2 across the entire endochondral skeleton alters the shape of the skeletal template in a spatially restricted fashion. Differentiation. 2010;79:194–202.

    CAS  PubMed  Google Scholar 

  115. Boeckx, C and Benítez-Burraco A, Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci., 2015. 9.

  116. Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochemistry. 2009;109:683–93.

    CAS  Google Scholar 

  117. Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021;371:6525.

    Google Scholar 

  118. Jang S-W, Srinivasan R, Jones EA, Sun G, Keles S, Krueger C, et al. Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes. J Neurochemistry. 2010;115:1409–20.

    CAS  Google Scholar 

  119. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 1998;18:237.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. LeBlanc SE, Jang S-W, Ward RM, Wrabetz L, Svaren J. Direct regulation of myelin protein zero expression by the Egr2 transactivator. J Biol Chem. 2006;281:5453–60.

    CAS  PubMed  Google Scholar 

  121. Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM. Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet. 2009;18:525–34.

    CAS  PubMed  Google Scholar 

  122. Mager GM, Ward RM, Srinivasan R, Jang S-W, Wrabetz L, Svaren J. Active gene repression by the Egr2-NAB complex during peripheral nerve myelination. J Biol Chem. 2008;283:18187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Le N, Nagarajan R, Wang JYT, Svaren J, LaPash C, Araki T, et al. Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci. 2005;8:932–40.

    CAS  PubMed  Google Scholar 

  124. Okano M, Bell DW, Haber DA, Li E. DNA Methyltransferases Dnmt3a and Dnmt3b are essential for De Novo methylation and mammalian development. Cell. 1999;99:247–57.

    CAS  PubMed  Google Scholar 

  125. Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLOS Genet. 2011;7:e1002228.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gölzenleuchter M, Kanwar R, Zaibak M, Al Saiegh F, Hartung T, Klukas J, et al. Plasticity of DNA methylation in a nerve injury model of pain. Epigenetics. 2015;10:200–12.

    PubMed  PubMed Central  Google Scholar 

  127. Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin. 2020;13:53.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Voisin A-S, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F, Genome-wide DNA. methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics. 2022;17:473–97.

    PubMed  Google Scholar 

  129. Baker Frost D, da Silveira W, Hazard ES, Atanelishvili I, Wilson RC, Flume J, et al. Differential DNA methylation landscape in skin fibroblasts from African Americans with systemic Sclerosis. Genes. 2021;12:129.

    PubMed  PubMed Central  Google Scholar 

  130. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983;303:390–6.

    CAS  PubMed  Google Scholar 

  131. Raff MC, Abney ER, Fok-Seang J. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell. 1985;42:61–9.

    CAS  PubMed  Google Scholar 

  132. Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature. 1988;333:562–5.

    CAS  PubMed  Google Scholar 

  133. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7:221–8.

    CAS  PubMed  Google Scholar 

  134. Riechmann V, van Crüchten I, Sablitzky F. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, 1d2 and Id3. Nucleic Acids Res. 1994;22:749–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jen Y, Manova K, Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn: Off Publ Am Assoc Anatomists. 1996;207:235–52.

    CAS  Google Scholar 

  136. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix—loop—helix proteins in cell growth and differentiation. Trends Cell Biol. 1998;8:58–65.

    CAS  PubMed  Google Scholar 

  137. Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol. 1998;18:2371–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010;330:779–82.

    CAS  PubMed  Google Scholar 

  139. Plemel JR, Manesh SB, Sparling JS, Tetzlaff W. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia. 2013;61:1471–87.

    PubMed  Google Scholar 

  140. Huang H-S, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with Schizophrenia. PLOS ONE. 2007;2:e809.

    PubMed  PubMed Central  Google Scholar 

  141. Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, et al. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry. 2018;23:1496–505.

    CAS  PubMed  Google Scholar 

  142. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Levy DR, Tamir T, Kaufman M, Parabucki A, Weissbrod A, Schneidman E, et al. Dynamics of social representation in the mouse prefrontal cortex. Nat Neurosci. 2019;22:2013–22.

    CAS  PubMed  Google Scholar 

  144. Yizhar O, Levy DR. The social dilemma: prefrontal control of mammalian sociability. Curr Opin Neurobiol. 2021;68:67–75.

    CAS  PubMed  Google Scholar 

  145. Chew L-J, Coley W, Cheng Y, Gallo V. Mechanisms of regulation of oligodendrocyte development by p38 Mitogen-activated Protein Kinase. J Neurosci. 2010;30:11011–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liang X, Draghi NA, Resh MD. Signaling from Integrins to Fyn to Rho Family GTPases regulates morphologic differentiation of Oligodendrocytes. J Neurosci. 2004;24:7140.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, et al. The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci. 2009;12:1398–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Boda E, Viganò F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, et al. The GPR17 receptor in NG2 expressing cells: Focus on in vivocell maturation and participation in acute trauma and chronic damage. Glia. 2011;59:1958–73.

    PubMed  Google Scholar 

  149. Carter CS, Grippo AJ, Pournajafi-Nazarloo H, Ruscio MG, and Porges SW, Oxytocin, vasopressin and sociality, in Progress in Brain Research, ID Neumann and R Landgraf, Editors. 2008, Elsevier. 331–6.

  150. Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol. 2009;30:548–57.

    CAS  PubMed  Google Scholar 

  151. Dai L, Carter CS, Ying J, Bellugi U, Pournajafi-Nazarloo H, Korenberg JR. Oxytocin and Vasopressin are dysregulated in williams syndrome, a genetic disorder affecting social behavior. PLOS ONE. 2012;7:e38513.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12:524–38.

    CAS  PubMed  Google Scholar 

  153. Johnson ZV, Young LJ. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev. 2017;76:87–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones Behav. 2012;61:359–79.

    CAS  Google Scholar 

  155. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25:150–76.

    CAS  PubMed  Google Scholar 

  156. Sue Carter C. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology. 1998;23:779–818.

    Google Scholar 

  157. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65:768–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Haas BW and Smith AK, Oxytocin, vasopressin, and Williams syndrome: epigenetic effects on abnormal social behavior. Front Genet., 2015. 6.

  159. Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in neuropsychiatric disorders: the “Tissue Issue”. Curr Behav Neurosci Rep. 2016;3:264–74.

    PubMed  PubMed Central  Google Scholar 

  160. Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist. 2015;22:447–63.

    PubMed  PubMed Central  Google Scholar 

  161. Tekendo-Ngongang C, Dahoun S, Nguefack S, Gimelli S, Sloan-Béna F, Wonkam A. Challenges in clinical diagnosis of williams-beuren syndrome in sub-saharan africans: case reports from cameroon. Mol Syndromol. 2014;5:287–92.

    PubMed  PubMed Central  Google Scholar 

  162. Lumaka A, Lukoo R, Mubungu G, Lumbala P, Mbayabo G, Mupuala A, et al. Williams-Beuren syndrome: pitfalls for diagnosis in limited resources setting. Clin Case Rep. 2016;4:294–7.

    PubMed  PubMed Central  Google Scholar 

  163. Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 2016;26:256–62.

    PubMed  PubMed Central  Google Scholar 

  164. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shen L. Gene Overlap: Test and visualize gene overlaps. 0.99.0. 2013. https://doi.org/10.18129/B9.bioc.GeneOverlap.

    Article  Google Scholar 

  166. Zhou Y, Zhou B, Pache L, Chang MA-OX, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    PubMed  PubMed Central  Google Scholar 

  167. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kumar K, Oli A, Hallikeri K, Shilpasree AS, Goni M. An optimized protocol for total RNA isolation from archived formalin-fixed paraffin-embedded tissues to identify the long non-coding RNA in oral squamous cell carcinomas. MethodsX. 2021;9:101602.

    PubMed  PubMed Central  Google Scholar 

  169. Oudelaar AM, Downes DJ, Davies JOJ, Hughes JR. Low-input Capture-C: A chromosome conformation capture assay to analyze chromatin architecture in small numbers of cells. Bio Protoc. 2017;7:e2645.

    PubMed  PubMed Central  Google Scholar 

  170. Splinter E, Grosveld F, de Laat W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 2004;375:493–507.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the input from the members of the Barak and Marco laboratories on the manuscript and the study. Human tissue was obtained from the NIH NeuroBioBank at the University of Maryland. We thank the donors of the brain tissue and their families for their invaluable donations for the advancement of scientific understanding. This work is supported by grants from the Fritz Thyssen Stiftung (Ref. 10.19.1.011MN) and the Israeli Science Foundation (Number 2305/20).

Author information

Authors and Affiliations

Authors

Contributions

SST, AM, and BB designed the experiments and wrote the manuscript. SST, TR, HP, GL, EB, AM and BB collected, analyzed and interpreted the results.

Corresponding authors

Correspondence to Asaf Marco or Boaz Barak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trangle, S.S., Rosenberg, T., Parnas, H. et al. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 28, 1112–1127 (2023). https://doi.org/10.1038/s41380-022-01921-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01921-z

This article is cited by

Search

Quick links