Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the cortico-striatal transcriptome in attention deficit hyperactivity disorder

Abstract

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate. Significant downregulation emerged of neurotransmitter gene pathways, particularly glutamatergic, in keeping with models that implicate these neurotransmitters in ADHD. Consistent with the genetic overlap between mental disorders, correlations were found between the cortico-striatal transcriptomic changes seen in ADHD and those seen in other neurodevelopmental and mood disorders. This transcriptomic evidence points to cortico-striatal neurotransmitter anomalies in the pathogenesis of ADHD, consistent with current models of the disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential gene expression results.
Fig. 2: Gene set enrichments analyses results.
Fig. 3: GSEA results for region-specific developmental sets in ACC and Caudate.
Fig. 4: Transdiagnostic transcriptomic analyses results.

Similar content being viewed by others

Data availability

Data are being deposited in NIMH Data Archive under Collection 3151, experiment 2056 (https://nda.nih.gov/edit_collection.html?id=3151), with the https://doi.org/10.15154/1527972.

Code availability

Code used for analyses and figures is deposited here: https://zenodo.org/badge/latestdoi/505945767, with the https://doi.org/10.5281/zenodo.6798439.

References

  1. Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24:562–75.

  2. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.

  3. Harich B, van der Voet M, Klein M, Čížek P, Fenckova M, Schenck A, et al. From rare copy number variants to biological processes in ADHD. Am J Psychiatry. 2020;177:855–66.

    Article  Google Scholar 

  4. Qi X, Wang S, Zhang L, Liu L, Wen Y, Ma M, et al. An integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes for attention-deficit/hyperactivity disorder. Psychiatry Res. 2019;282:112639.

    Article  CAS  Google Scholar 

  5. Liao C, Laporte AD, Spiegelman D, Akçimen F, Joober R, Dion PA, et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun. 2019;10:1–7.

    Article  Google Scholar 

  6. McCaffrey TA, St Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D, et al. Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics. 2020;13:1–17.

    Article  Google Scholar 

  7. Lorenzo G, Braun J, Muñoz G, Casarejos MJ, Bazán E, Jimenez-Escrig A. RNA-Seq blood transcriptome profiling in familial attention deficit and hyperactivity disorder (ADHD). Psychiatry Res. 2018;270:544–6.

    Article  CAS  Google Scholar 

  8. Mortimer N, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Richarte V, Corrales M, et al. Transcriptome profiling in adult attention-deficit hyperactivity disorder. Eur Neuropsychopharmacol. 2020;41:160–6.

    Article  CAS  Google Scholar 

  9. Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. 2019;176:531–42.

    Article  Google Scholar 

  10. Hoogman M, Buitelaar JK, Faraone SV, Shaw P, Franke B. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults–Authors’ reply. Lancet Psychiatry. 2017;4:440–1.

    Article  Google Scholar 

  11. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects, ADHD functional MR imaging studies meta-analysis. JAMA Psychiatry. 2013;70:185–98.

    Article  Google Scholar 

  12. Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U. Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? a meta-analysis. Am J Psychiatry. 2012;169:264–72.

    Article  Google Scholar 

  13. Volkow ND, Wang G-J, Kollins SH, Wigal TL, Newcorn JH, Telang F, et al. Evaluating dopamine reward pathway in ADHD: clinical implications.[Erratum appears in JAMA. 2009 Oct 7;302(13):1420]. JAMA. 2009;302:1084–91.

    Article  CAS  Google Scholar 

  14. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet. 2012;44:78–84.

    Article  CAS  Google Scholar 

  15. Halperin JM, Schulz KP. Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull. 2006;132:560.

    Article  Google Scholar 

  16. Shaw P, Sudre G. Adolescent attention-deficit/hyperactivity disorder: understanding teenage symptom trajectories. Biol Psychiatry. 2021;89:152–61.

    Article  CAS  Google Scholar 

  17. Schulz KP, Li X, Clerkin SM, Fan J, Berwid OG, Newcorn JH, et al. Prefrontal and parietal correlates of cognitive control related to the adult outcome of attention-deficit/hyperactivity disorder diagnosed in childhood. Cortex. 2017;90:1–11.

    Article  Google Scholar 

  18. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv. 2017.

  19. Serretti A, Fabbri C. Shared genetics among major psychiatric disorders. Lancet. 2013;381:1339–41.

    Article  Google Scholar 

  20. Opel N, Goltermann J, Hermesdorf M, Berger K, Baune BT, Dannlowski U. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega-and meta-analytical findings from the ENIGMA consortium. Biol Psychiatry. 2020;88:678–86.

    Article  Google Scholar 

  21. Abramovitch A, Short T, Schweiger A. The C factor: cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev. 2021;86:102007.

  22. Hartley SW, Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinforma. 2015;16:224.

    Article  Google Scholar 

  23. Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 2016;5:1438.

    Google Scholar 

  24. Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci USA 2010;107:9546–51.

    Article  CAS  Google Scholar 

  25. Kaiser HF. The application of electronic computers to factor analysis. Educ Psychol Meas. 1960;20:141–51.

    Article  Google Scholar 

  26. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Article  Google Scholar 

  27. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  28. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  Google Scholar 

  29. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    Article  CAS  Google Scholar 

  30. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    Article  CAS  Google Scholar 

  31. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    Article  CAS  Google Scholar 

  32. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  Google Scholar 

  33. Ripke S, Walters JT, O’Donovan MC, Consortium TSWGoPG. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv. 2020.

  34. Yu D, Sul JH, Tsetsos F, Nawaz MS, Huang AY, Zelaya I, et al. Interrogating the genetic determinants of Tourette’s syndrome and other Tic disorders through genome-wide association studies. Am J Psychiatry. 2019;176:217–27.

    Article  Google Scholar 

  35. International Obsessive Compulsive Disorder Foundation Genetics Collaborative, Studies OCDCGA. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry. 2018;23:1181–8.

    Article  Google Scholar 

  36. Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun. 2019;10:4558.

    Article  Google Scholar 

  37. Kweon K, Shin ES, Park KJ, Lee JK, Joo Y, Kim HW. Genome-wide analysis reveals four novel loci for attention-deficit hyperactivity disorder in Korean youths. Soa Chongsonyon Chongsin Uihak. 2018;29:62–72.

    Google Scholar 

  38. Wang KS, Liu X, Zhang Q, Pan Y, Aragam N, Zeng M. A meta-analysis of two genome-wide association studies identifies 3 new loci for alcohol dependence. J Psychiatr Res. 2011;45:1419–25.

    Article  Google Scholar 

  39. Zuo L, Gelernter J, Zhang CK, Zhao H, Lu L, Kranzler HR, et al. Genome-wide association study of alcohol dependence implicates KIAA0040 on chromosome 1q. Neuropsychopharmacology. 2012;37:557–66.

    Article  CAS  Google Scholar 

  40. Zuo L, Tan Y, Zhang X, Wang X, Krystal J, Tabakoff B, et al. A new genomewide association meta-analysis of alcohol dependence. Alcohol Clin Exp Res. 2015;39:1388–95.

    Article  CAS  Google Scholar 

  41. Sprooten E, Fleming KM, Thomson PA, Bastin ME, Whalley HC, Hall J, et al. White matter integrity as an intermediate phenotype: exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res. 2013;206:223–31.

    Article  Google Scholar 

  42. Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104:65–75.

    Article  CAS  Google Scholar 

  43. van der Meer D, Frei O, Kaufmann T, Shadrin AA, Devor A, Smeland OB, et al. Understanding the genetic determinants of the brain with MOSTest. Nat Commun. 2020;11:3512.

    Article  Google Scholar 

  44. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:2098.

    Article  Google Scholar 

  45. Lemarchant S, Pruvost M, Montaner J, Emery E, Vivien D, Kanninen K, et al. ADAMTS proteoglycanases in the physiological and pathological central nervous system. J Neuroinflammation. 2013;10:133.

    Article  Google Scholar 

  46. Qiu Z, Yang J, Deng G, Li D, Zhang S. Angiopoietin-like 4 promotes angiogenesis and neurogenesis in a mouse model of acute ischemic stroke. Brain Res Bull. 2021;168:156–64.

    Article  CAS  Google Scholar 

  47. Cicvaric A, Sachernegg HM, Stojanovic T, Symmank D, Smani T, Moeslinger T, et al. Podoplanin gene disruption in mice promotes in vivo neural progenitor cells proliferation, selectively impairs dentate gyrus synaptic depression and induces anxiety-like behaviors. Front Cell Neurosci. 2019;13:561.

    Article  CAS  Google Scholar 

  48. Mahajan GJ, Vallender EJ, Garrett MR, Challagundla L, Overholser JC, Jurjus G, et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:177–86.

    Article  CAS  Google Scholar 

  49. Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, et al. Unique RNA signature of different lesion types in the brain white matter in progressive multiple sclerosis. Acta Neuropathol Commun. 2019;7:58.

    Article  Google Scholar 

  50. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800.

    Article  CAS  Google Scholar 

  51. Zhang H, Zhou H, Lencz T, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study of cognitive flexibility assessed by the Wisconsin Card Sorting Test. Am J Med Genet B Neuropsychiatr Genet. 2018;177:511–9.

    Article  Google Scholar 

  52. de la Fuente J, Davies G, Grotzinger AD, Tucker-Drob EM, Deary IJ. A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data. Nat Hum Behav. 2021;5:49–58.

    Article  Google Scholar 

  53. Haber S, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2009;35:4–26.

    Article  Google Scholar 

  54. Akutagava‐Martins GC, Salatino‐Oliveira A, Genro JP, Contini V, Polanczyk G, Zeni C, et al. Glutamatergic copy number variants and their role in attention‐deficit/hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2014;165:502–9.

    Article  Google Scholar 

  55. Elia J, Ungal G, Kao C, Ambrosini A, De Jesus-Rosario N, Larsen L, et al. Fasoracetam in adolescents with ADHD and glutamatergic gene network variants disrupting mGluR neurotransmitter signaling. Nat Commun. 2018;9:1–9.

    Article  CAS  Google Scholar 

  56. Zhang Q, Huang X, Chen XZ, Li SY, Yao T, Wu J. Association of gene variations in ionotropic glutamate receptor and attention-deficit/hyperactivity disorder in the Chinese population: a two-stage case–control study. J Atten Disord. 2021;25:1362–73.

  57. Gilbert D, Isaacs K, Augusta M, Macneil L, Mostofsky S. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology. 2011;76:615–21.

    Article  CAS  Google Scholar 

  58. Puts NA, Ryan M, Oeltzschner G, Horska A, Edden RA, Mahone EM. Reduced striatal GABA in unmedicated children with ADHD at 7T. Psychiatry Res Neuroimaging. 2020;301:111082.

    Article  Google Scholar 

  59. Calabresi P, Pisani A, Centonze D, Bernardi G. Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci Biobehav Rev. 1997;21:519–23.

    Article  CAS  Google Scholar 

  60. Taylor H, Campbell J, Nobes CD. Ephs and ephrins. Curr Biol. 2017;27:R90–5.

    Article  CAS  Google Scholar 

  61. Szekely E, Sudre GP, Sharp W, Leibenluft E, Shaw P. Defining the neural substrate of the adult outcome of childhood ADHD: a multimodal neuroimaging study of response inhibition. Am J Psychiatry. 2017;174:867–76.

    Article  Google Scholar 

  62. Clerkin SM, Schulz KP, Berwid OG, Fan J, Newcorn JH, Tang CY, et al. Thalamo-cortical activation and connectivity during response preparation in adults with persistent and remitted ADHD. Am J Psychiatry. 2013;170:1011–9.

    Article  Google Scholar 

  63. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    Article  CAS  Google Scholar 

  64. Arrubla J, Farrher E, Strippelmann J, Tse DH, Grinberg F, Shah NJ, et al. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res. 2017;95:1796–808.

    Article  CAS  Google Scholar 

  65. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article  CAS  Google Scholar 

  66. Akula N, Marenco S, Johnson K, Feng N, Zhu K, Schulmann A, et al. Deep transcriptome sequencing of subgenual anterior cingulate cortex reveals cross-diagnostic and diagnosis-specific RNA expression changes in major psychiatric disorders. Neuropsychopharmacol. 2021;46:1364–72.

    Article  CAS  Google Scholar 

  67. Benjamin KJM, Feltrin AS, Barbosa AR, Jaffe AE, Collado-Torres L, Burke EE, et al. Genetic and environmental regulation of caudate nucleus transcriptome: insight into schizophrenia risk and the dopamine system. medRxiv 2020.11.18.20230540; https://doi.org/10.1101/2020.11.18.20230540.

  68. Pacifico R, Davis R. Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder. Mol Psychiatry. 2017;22:441–9.

    Article  CAS  Google Scholar 

  69. Piantadosi SC, McClain LL, Klei L, Wang J, Chamberlain BL, Springer SA, et al. Transcriptome alterations are enriched for synapse-associated genes in the striatum of subjects with obsessive-compulsive disorder. Transl Psychiatry. 2021;11:171.

    Article  CAS  Google Scholar 

  70. Wright C, Shin JH, Rajpurohit A, Deep-Soboslay A, Collado-Torres L, Brandon NJ, et al. Altered expression of histamine signaling genes in autism spectrum disorder. Transl Psychiatry. 2017;7:e1126.

    Article  CAS  Google Scholar 

  71. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the intramural programs of the NIMH and NHGRI: ZIC MH002903-15 to SM, ZIA HG200378-10 to PS, and ZIA HG000140 to ADB. We acknowledge the Pittsburgh and Maryland sites within the NIH funded Neurobiobank for the provision of tissues. We acknowledge Bhaskar Kolachana at the Human Brain Collection Core for preparing DNA for genotyping, Chandrasekharappa Settara and Frank Donovan at the Genomics Core for genotyping, and the NIH Intramural Sequencing Center. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

Author information

Authors and Affiliations

Authors

Contributions

Contribution of each author to the manuscript: Study concept and design: GS, PS and SM. Acquisition, analysis, or interpretation of data: all authors. Drafting of the manuscript: GS and PS. Critical revision of the manuscript for important intellectual content: all authors. Statistical analysis: GS. Administrative, technical, or material support: GGS, WS, BJ, QX, PKA and LE. Study supervision: PS and SM. Obtained funding: PS, SM and ADB.

Corresponding author

Correspondence to Philip Shaw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudre, G., Gildea, D.E., Shastri, G.G. et al. Mapping the cortico-striatal transcriptome in attention deficit hyperactivity disorder. Mol Psychiatry 28, 792–800 (2023). https://doi.org/10.1038/s41380-022-01844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01844-9

This article is cited by

Search

Quick links