Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use

Abstract

Neuroimaging studies in substance use disorder have shown widespread impairments in white matter (WM) microstructure suggesting demyelination and axonal damage. However, substantially fewer studies explored the generalized vs. the acute and/or specific drug effects on WM. Our study assessed whole-brain WM integrity in three subgroups of individuals addicted to drugs, encompassing those with cocaine (CUD) or heroin (HUD) use disorder, compared to healthy controls (CTL). Diffusion MRI was acquired in 58 CTL, 28 current cocaine users/CUD+, 32 abstinent cocaine users/CUD−, and 30 individuals with HUD (urine was positive for cocaine in CUD+ and opiates used for treatment in HUD). Tract-Based Spatial Statistics allowed voxelwise analyses of diffusion metrics [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)]. Permutation statistics (p-corrected < 0.05) were used for between-group t-tests. Compared to CTL, all individuals with addiction showed widespread decreases in FA, and increases in MD, RD, and AD (19–57% of WM skeleton, p < 0.05). The HUD group showed the most impairments, followed by the CUD+, with only minor FA reductions in CUD− (<0.2% of WM skeleton, p = 0.05). Longer periods of regular use were associated with decreased FA and AD, and higher subjective craving was associated with increased MD, RD, and AD, across all individuals with drug addiction (p < 0.05). These findings demonstrate extensive WM impairments in individuals with drug addiction characterized by decreased anisotropy and increased diffusivity, thought to reflect demyelination and lower axonal packing. Extensive abnormalities in both groups with positive urine status (CUD+ and HUD), and correlations with craving, suggest greater WM impairments with more recent use. Results in CUD−, and correlations with regular use, further imply cumulative and/or persistent WM damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Whole-brain differences between healthy controls (CTL) and individuals with substance use disorder (SUD).
Fig. 2: Group-specific whole-brain differences of fractional anisotropy (FA) and mean diffusivities (MD).
Fig. 3: Group-specific whole-brain differences of axial (AD) and radial diffusivities (RD).
Fig. 4: Significant whole-brain voxelwise correlations between drug use variables and white matter (WM) diffusion metrics in individuals with SUD.

Similar content being viewed by others

References

  1. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10:318–25.

    Article  CAS  Google Scholar 

  2. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron. 2018;98:886–903.

    Article  CAS  Google Scholar 

  3. Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacol. 2022;47:276–91.

    Article  Google Scholar 

  4. Hampton WH, Hanik IM, Olson IR. Substance abuse and white matter: findings, limitations, and future of diffusion tensor imaging research. Drug Alcohol Depend. 2019;197:288–98.

    Article  Google Scholar 

  5. Suchting R, Beard CL, Schmitz JM, Soder HE, Yoon JH, Hasan KM, et al. A meta‐analysis of tract‐based spatial statistics studies examining white matter integrity in cocaine use disorder. Addiction Biology. 2020;26:e12902.

  6. Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, et al. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: findings from the ENIGMA-Addiction working group. Drug Alcohol Depend. 2022;230:109185.

    Article  Google Scholar 

  7. Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet. 2007;369:1047–53.

    Article  Google Scholar 

  8. He Q, Li D, Turel O, Bechara A, Hser Y-I. White matter integrity alternations associated with cocaine dependence and long-term abstinence: preliminary findings. Behavioural Brain Res. 2020;379:112388.

    Article  Google Scholar 

  9. Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ. Cocaine addiction: diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res Neuroimaging. 2010;181:57–63.

    Article  CAS  Google Scholar 

  10. van Son D, Wiers RW, Catena A, Perez-Garcia M, Verdejo-García A. White matter disruptions in male cocaine polysubstance users: associations with severity of drug use and duration of abstinence. Drug Alcohol Depend. 2016;168:247–54.

    Article  Google Scholar 

  11. Tondo LP, Viola TW, Fries GR, Kluwe-Schiavon B, Rothmann LM, Cupertino R, et al. White matter deficits in cocaine use disorder: convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomic analysis. Transl Psychiatry. 2021;11:252.

    Article  CAS  Google Scholar 

  12. Bora E, Yücel M, Fornito A, Pantelis C, Harrison BJ, Cocchi L, et al. White matter microstructure in opiate addiction. Addiction Biol. 2012;17:141–8.

    Article  CAS  Google Scholar 

  13. Li W, Zhu J, Li Q, Ye J, Chen J, Liu J, et al. Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. Brain Behav. 2016;6:e00436.

  14. Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, et al. Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abus. 2007;34:562–75.

    Article  CAS  Google Scholar 

  15. Li W, Li Q, Zhu J, Qin Y, Zheng Y, Chang H, et al. White matter impairment in chronic heroin dependence: a quantitative DTI study. Brain Res. 2013;1531:58–64.

    Article  CAS  Google Scholar 

  16. Wang X, Yu R, Zhou X, Liao Y, Tang J, Liu T, et al. Reversible brain white matter microstructure changes in heroin addicts: a longitudinal study: reversible WM heroin addicts. Addiction Biol. 2013;18:727–8.

    Article  Google Scholar 

  17. Wollman SC, Alhassoon OM, Stern MJ, Hall MG, Rompogren J, Kimmel CL, et al. White matter abnormalities in long-term heroin users: a preliminary neuroimaging meta-analysis. Am J Drug Alcohol Abus. 2015;41:133–8.

    Article  Google Scholar 

  18. Lyoo IK, Streeter CC, Ahn KH, Lee HK, Pollack MH, Silveri MM, et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res Neuroimaging. 2004;131:135–45.

    Article  Google Scholar 

  19. Neiman J, Haapaniemi HM, Hillbom M. Neurological complications of drug abuse: pathophysiological mechanisms. Eur J Neurol. 2000;7:595–606.

    Article  CAS  Google Scholar 

  20. Parvaz MA, Moeller SJ, d’Oleire Uquillas F, Pflumm A, Maloney T, Alia-Klein N, et al. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: a longitudinal study: PFC recovery after reduced use. Addiction Biol. 2016;22:1391–401.

    Article  Google Scholar 

  21. King SG, Gaudreault P-O, Malaker P, Kim J, Alia-Klein N, Xu J, et al. Microstructural impairments in a topologically distinct prefrontal-habenular connection in cocaine addiction. Neuron. 2022;S0896-6273:00816–9.

  22. First M, Spitzer R, Gibbon M, J W. Structured clinical interview for DSM-IV axis I disorders - Patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department New York State Psychiatric Institute; 1996.

  23. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.

    Google Scholar 

  24. McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, et al. The fifth edition of the addiction severity index. J Subst Abus Treat. 1992;9:199–213.

    Article  CAS  Google Scholar 

  25. Kampman KM, Volpicelli JR, Mcginnis DE, Alterman AI, Weinrieb RM, D’Angelo L, et al. Reliability and validity of the cocaine selective severity assessment. Addictive Behav. 1998;23:449–61.

    Article  CAS  Google Scholar 

  26. Gossop M. The development of a short opiate withdrawal scale (SOWS). Addictive Behav. 1990;15:487–90.

    Article  CAS  Google Scholar 

  27. Tiffany ST, Singleton E, Haertzen CA, Henningfield JE. The development of a cocaine craving questionnaire. Drug Alcohol Depend. 1993;34:19–28.

    Article  CAS  Google Scholar 

  28. Heinz AJ, Epstein DH, Schroeder JR, Singleton EG, Heishman SJ, Preston KL. Heroin and cocaine craving and use during treatment: measurement validation and potential relationships. J Subst Abus Treat. 2006;31:355–64.

    Article  Google Scholar 

  29. Gossop M, Griffiths P, Powis B, Strang J. Severity of dependence and route of administration of heroin, cocaine and amphetamines. Br J Addiction. 1992;87:1527–36.

    Article  CAS  Google Scholar 

  30. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br J Addict. 1991;86:1119–27.

    Article  CAS  Google Scholar 

  31. Wilkinson GS. Wide range achievement test 3. Wilmington, DE: Wide Range, Inc; 1993.

  32. Wechsler D. Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation; 1999.

  33. Beck AT, Steer RA, Garbin MG. Psychometric properties of the beck depression inventory: twenty-five years of evaluation. Clin Psychol Rev. 1988;8:77–100.

    Article  Google Scholar 

  34. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consulting Clin Psychol. 1988;56:893–7.

    Article  CAS  Google Scholar 

  35. Milenkovic S, Dragovic M. Modification of the Edinburgh handedness inventory: a replication study. Laterality. 2013;18:340–8.

    Article  Google Scholar 

  36. Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage. 2019;202:116137.

    Article  Google Scholar 

  37. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:208–19.

    Article  Google Scholar 

  38. Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage. 2019;200:391–404.

    Article  Google Scholar 

  39. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage. 2016;125:1063–78.

    Article  Google Scholar 

  40. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–505.

    Article  Google Scholar 

  41. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44:83–98.

    Article  Google Scholar 

  42. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage. 2008;40:570–82.

    Article  Google Scholar 

  43. Menzler K, Belke M, Wehrmann E, Krakow K, Lengler U, Jansen A, et al. Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. NeuroImage. 2011;54:2557–62.

    Article  CAS  Google Scholar 

  44. Takao H, Hayashi N, Ohtomo K. Sex dimorphism in the white matter: fractional anisotropy and brain size. J Magn Reson Imaging. 2014;39:917–23.

    Article  Google Scholar 

  45. Powell JL, Parkes L, Kemp GJ, Sluming V, Barrick TR, García-Fiñana M. The effect of sex and handedness on white matter anisotropy: A diffusion tensor magnetic resonance imaging study. Neuroscience. 2012;207:227–42.

    Article  CAS  Google Scholar 

  46. Rippon G, Jordan-Young R, Kaiser A, Fine C. Recommendations for sex/gender neuroimaging research: key principles and implications for research design, analysis, and interpretation. Front Hum Neurosci. 2014;8:1–13.

    Article  Google Scholar 

  47. Roalf DR, Quarmley M, Elliott MA, Satterthwaite TD, Vandekar SN, Ruparel K, et al. The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort. NeuroImage 2016;125:903–19.

    Article  Google Scholar 

  48. Fortier CB, Leritz EC, Salat DH, Lindemer E, Maksimovskiy AL, Shepel J, et al. Widespread effects of alcohol on white matter microstructure. Alcohol Clin Exp Res. 2014;38:2925–33.

    Article  Google Scholar 

  49. Lin F, Wu G, Zhu L, Lei H. Heavy smokers show abnormal microstructural integrity in the anterior corpus callosum: A diffusion tensor imaging study with tract-based spatial statistics. Drug Alcohol Depend. 2013;129:82–87.

    Article  CAS  Google Scholar 

  50. Baeza-Loya S, Velasquez KM, Molfese DL, Viswanath H, Curtis KN, Thompson-Lake DGY, et al. Anterior cingulum white matter is altered in tobacco smokers: anterior cingulum white matter in tobacco smokers. Am J Addict. 2016;25:210–4.

    Article  Google Scholar 

  51. Savjani RR, Velasquez KM, Thompson-Lake DGY, Baldwin PR, Eagleman DM, De La Garza IIR, et al. Characterizing white matter changes in cigarette smokers via diffusion tensor imaging. Drug Alcohol Depend. 2014;145:134–42.

    Article  Google Scholar 

  52. Jansen JM, van Holst RJ, van den Brink W, Veltman DJ, Caan MWA, Goudriaan AE. Brain function during cognitive flexibility and white matter integrity in alcohol-dependent patients, problematic drinkers and healthy controls: brain function and WM in AUD. Addiction Biol. 2015;20:979–89.

    Article  Google Scholar 

  53. Ashtari M, Cervellione K, Cottone J, Ardekani BA, Kumra S. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res. 2009;43:189–204.

    Article  Google Scholar 

  54. Gruber SA, Silveri MM, Dahlgren MK, Yurgelun-Todd D. Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Exp Clin Psychopharmacol. 2011;19:231–42.

    Article  Google Scholar 

  55. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51–61.

    Article  CAS  Google Scholar 

  56. Budde MD, Kim JH, Liang H-F, Schmidt RE, Russell JH, Cross AH, et al. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med. 2007;57:688–95.

    Article  Google Scholar 

  57. Horsfield MA, Jones DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR Biomed. 2002;15:570–7.

    Article  Google Scholar 

  58. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.

    Article  Google Scholar 

  59. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.

    Article  CAS  Google Scholar 

  60. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix L, Virta A, et al. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. NeuroImage. 2001;13:1174–85.

    Article  CAS  Google Scholar 

  61. Wheeler-Kingshott CAM, Cercignani M. About “axial” and “radial” diffusivities. Magn Reson Med. 2009;61:1255–60.

    Article  Google Scholar 

  62. Moore EE, Hohman TJ, Badami FS, Pechman KR, Osborn KE, Acosta LMY, et al. Neurofilament relates to white matter microstructure in older adults. Neurobiol Aging. 2018;70:233–41.

    Article  Google Scholar 

  63. Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes—what do we know? Front Neurol. 2018;9:92.

    Article  Google Scholar 

  64. Narayana PA, Herrera JJ, Bockhorst KH, Esparza-Coss E, Xia Y, Steinberg JL, et al. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res Neuroimaging. 2014;221:220–30.

    Article  Google Scholar 

  65. Scholz J, Tomassini V, Johansen-Berg H. Individual differences in white matter microstructure in the healthy brain. In: Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy, 2nd ed. San Diego, CA: Elsevier; 2014;301–16.

  66. Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging: prevalence of multifiber voxels in WM. Hum Brain Mapp. 2013;34:2747–66.

    Article  Google Scholar 

  67. Chamberland M, Raven EP, Genc S, Duffy K, Descoteaux M, Parker GD, et al. Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. NeuroImage. 2019;200:89–100.

    Article  Google Scholar 

  68. Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol. 2012;3:121.

  69. Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend. 2017;180:156–70.

    Article  CAS  Google Scholar 

  70. Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014;87:135–49.

    Article  Google Scholar 

  71. Pereira RB, Andrade PB, Valentão P. A comprehensive view of the neurotoxicity mechanisms of cocaine and ethanol. Neurotox Res. 2015;28:253–67.

    Article  CAS  Google Scholar 

  72. Belachew S, Rogister B, Rigo JM, Malgrange B, Moonen G. Neurotransmitter-mediated regulation of CNS myelination: a review. Acta Neurol Belg. 1999;99:21–31.

    CAS  Google Scholar 

  73. Zhang Y, Zhang H, Wang L, Jiang W, Xu H, Xiao L, et al. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophrenia Res. 2012;138:8–17.

    Article  Google Scholar 

  74. Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry. 2017;7:1262.

    Article  Google Scholar 

  75. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479:23–40.

    Article  CAS  Google Scholar 

  76. Johnson S, North R. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    Article  CAS  Google Scholar 

  77. Smith HR, Beveridge TJR, Nader MA, Porrino LJ. Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend. 2014;137:143–7.

    Article  CAS  Google Scholar 

  78. Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta Mol Basis Dis. 2016;1862:506–10.

    Article  CAS  Google Scholar 

  79. Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev. 2008;58:192–208.

    Article  CAS  Google Scholar 

  80. Cadet JL, Bisagno V, Milroy CM. Neuropathology of substance use disorders. Acta Neuropathol. 2014;127:91–107.

    Article  CAS  Google Scholar 

  81. Sajja RK, Rahman S, Cucullo L. Drugs of abuse and blood-brain barrier endothelial dysfunction: a focus on the role of oxidative stress. J Cereb Blood Flow Metab. 2016;36:539–54.

    Article  CAS  Google Scholar 

  82. Kaufman MJ. Cocaine-induced cerebral vasoconstriction detected in humans with magnetic resonance angiography. JAMA. 1998;279:376.

    Article  CAS  Google Scholar 

  83. Buttner A. Neuropathological Alterations in Cocaine Abuse. CMC. 2012;19:5597–5600.

    Article  CAS  Google Scholar 

  84. Büttner A, Rohrmoser K, Mall G, Penning R, Weis S. Widespread axonal damage in the brain of drug abusers as evidenced by accumulation of β-amyloid precursor protein (β-APP): an immunohistochemical investigation. Addiction. 2006;101:1339–46.

    Article  Google Scholar 

  85. Andersen SN, Skullerud K. Hypoxic/ischaemic brain damage, especially pallidal lesions, in heroin addicts. Forensic Sci Int. 1999;102:51–59.

    Article  CAS  Google Scholar 

  86. Wang Y, Li W, Li Q, Yang W, Zhu J, Wang W. White matter impairment in heroin addicts undergoing methadone maintenance treatment and prolonged abstinence: a preliminary DTI study. Neurosci Lett. 2011;494:49–53.

    Article  CAS  Google Scholar 

  87. Li W, Li Q, Wang Y, Zhu J, Ye J, Yan X, et al. Methadone-induced damage to white matter integrity in methadone maintenance patients: a longitudinal self-control DTI study. Sci Rep. 2016;6:19662.

    Article  CAS  Google Scholar 

  88. Zhuang W, Tang Y, Zhong N, Jiang H, Du J, Wang J, et al. Persistent microstructural deficits of internal capsule in one-year abstinent male methamphetamine users: a longitudinal diffusion tensor imaging study. J Neuroimmune Pharm. 2016;11:523–30.

    Article  Google Scholar 

  89. Kaag AM, van Wingen GA, Caan MWA, Homberg JR, van den Brink W, Reneman L. White matter alterations in cocaine users are negatively related to the number of additionally (ab)used substances: white matter and cocaine use. Addiction Biol. 2017;22:1048–56.

    Article  CAS  Google Scholar 

  90. Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28:2959–75.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Drug Abuse (Goldstein, 1R01DA048301-01A1), the National Center for Complementary and Integrative Health (Goldstein, 1R01AT010627-01), and the Canadian Institutes of Health Research (Gaudreault, postdoctoral research fellowship).

Author information

Authors and Affiliations

Authors

Contributions

Study design: POG, NAK, RZG. Data management: PM. Data analysis: POG, SGK. Initial Manuscript writing: POG. Manuscript review: POG, SGK, PM, NAK, RZG.

Corresponding author

Correspondence to Rita Z. Goldstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudreault, PO., King, S.G., Malaker, P. et al. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use. Mol Psychiatry 28, 780–791 (2023). https://doi.org/10.1038/s41380-022-01833-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01833-y

Search

Quick links