Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome

Abstract

Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the behavioral experiments conducted in the study.
Fig. 2: Effects of adolescent THC on sucrose self-administration, reward devaluation, and heroin self-administration.
Fig. 3: Stress effects in rats with adolescent THC experience.
Fig. 4: Overview of the DESeq analysis from the BLA.
Fig. 5: DEG-enriched Gene Networks from the BLA transcriptome.
Fig. 6: Results from CIBERSORTx in silico cytometry and immunohistochemistry.

Similar content being viewed by others

References

  1. UNODC. World Drug Report 2019: United Nations Office on Drugs and Crime; 2019. Report no. Sales No. E.19.XI.8.

  2. Johnston LD, Miech, RA, O’Malley, PM, Bachman, JG, Schulenberg, JE, Patrick, ME. Monitoring the Future national survey results on drug use, 1975–2019: Overview, key findings on adolescent drug use. Ann Arbor, MI: The University of Michigan; 2020.

  3. Schulenberg J, Johnston L, O’Malley P, Bachman J, Miech R, Patrick ME. Monitoring the Future national survey results on drug use, 1975–2019: Volume II, college students and adults ages 19–60. Institute for Social Research. Ann Arbor, MI: University of Michigan; 2020.

    Google Scholar 

  4. Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci. 2014;8:361.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Renard J, Rosen LG, Loureiro M, De Oliveira C, Schmid S, Rushlow WJ, et al. Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb Cortex. 2017;27:1297–310.

    PubMed  Google Scholar 

  6. Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, et al. Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep. 2017;7:11420.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rubino T, Vigano D, Realini N, Guidali C, Braida D, Capurro V, et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology. 2008;33:2760–71.

    Article  CAS  PubMed  Google Scholar 

  8. Prini P, Rusconi F, Zamberletti E, Gabaglio M, Penna F, Fasano M, et al. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J Psychiatry Neurosci. 2017;42:170082.

    Google Scholar 

  9. Stopponi S, Soverchia L, Ubaldi M, Cippitelli A, Serpelloni G, Ciccocioppo R. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats. Eur Neuropsychopharmacol. 2014;24:1037–45.

    Article  CAS  PubMed  Google Scholar 

  10. Zamberletti E, Beggiato S, Steardo L Jr., Prini P, Antonelli T, Ferraro L, et al. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats. Neurobiol Dis. 2014;63:35–47.

    Article  CAS  PubMed  Google Scholar 

  11. Abela AR, Rahbarnia A, Wood S, Le AD, Fletcher PJ. Adolescent exposure to Delta9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology. 2019;236:1875–86.

    Article  CAS  PubMed  Google Scholar 

  12. Llorente-Berzal A, Puighermanal E, Burokas A, Ozaita A, Maldonado R, Marco EM, et al. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption. PLoS One. 2013;8:e78386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19:763–72.

    Article  CAS  PubMed  Google Scholar 

  14. Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology. 2007;32:607–15.

    Article  CAS  PubMed  Google Scholar 

  15. Lecca D, Scifo A, Pisanu A, Valentini V, Piras G, Sil A, et al. Adolescent cannabis exposure increases heroin reinforcement in rats genetically vulnerable to addiction. Neuropharmacology. 2020;166:107974.

    Article  CAS  PubMed  Google Scholar 

  16. Tomasiewicz HC, Jacobs MM, Wilkinson MB, Wilson SP, Nestler EJ, Hurd YL. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol Psychiatry. 2012;72:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scherma M, Dessi C, Muntoni AL, Lecca S, Satta V, Luchicchi A, et al. Adolescent Delta(9)-Tetrahydrocannabinol exposure alters WIN55,212-2 self-administration in adult rats. Neuropsychopharmacology. 2016;41:1416–26.

    Article  CAS  PubMed  Google Scholar 

  18. Friedman AL, Meurice C, Jutkiewicz EM. Effects of adolescent Delta9-tetrahydrocannabinol exposure on the behavioral effects of cocaine in adult Sprague–Dawley rats. Exp Clin Psychopharmacol. 2019;27:326–37.

    Article  CAS  PubMed  Google Scholar 

  19. Chandra S, Radwan MM, Majumdar CG, Church JC, Freeman TP, ElSohly MA. New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur Arch Psychiatry Clin Neurosci. 2019;269:5–15.

    Article  PubMed  Google Scholar 

  20. ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United States. Biol Psychiatry. 2016;79:613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cash MC, Cunnane K, Fan C, Romero-Sandoval EA. Mapping cannabis potency in medical and recreational programs in the United States. PLoS One. 2020;15:e0230167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keeley RJ, Trow J, Bye C, McDonald RJ. Part II: strain- and sex-specific effects of adolescent exposure to THC on adult brain and behaviour: variants of learning, anxiety and volumetric estimates. Behav Brain Res. 2015;288:132–52.

    Article  CAS  PubMed  Google Scholar 

  23. Silva L, Black R, Michaelides M, Hurd YL, Dow-Edwards D. Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: the unique susceptibility of the prepubescent animal. Neurotoxicol Teratol. 2016;58:88–100.

    Article  CAS  PubMed  Google Scholar 

  24. Kruse LC, Cao JK, Viray K, Stella N, Clark JJ. Voluntary oral consumption of Delta(9)-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology. 2019;44:1406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weidenfeld J, Feldman S, Mechoulam R. Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology. 1994;59:110–2.

    Article  CAS  PubMed  Google Scholar 

  26. DeVuono MV, La Caprara O, Sullivan MT, Bath A, Petrie GN, Limebeer CL, et al. Role of the stress response and the endocannabinoid system in Delta(9)-tetrahydrocannabinol (THC)-induced nausea. Psychopharmacology 2020;237:2187–99.

  27. McLaughlin RJ, Hill MN, Gorzalka BB. Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur J Pharm. 2009;624:71–6.

    Article  CAS  Google Scholar 

  28. Miller ML, Chadwick B, Dickstein DL, Purushothaman I, Egervari G, Rahman T, et al. Adolescent exposure to Delta(9)-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry. 2019;24:588–600.

    Article  CAS  PubMed  Google Scholar 

  29. Saravia R, Ten-Blanco M, Julia-Hernandez M, Gagliano H, Andero R, Armario A, et al. Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology. 2019;144:345–57.

    Article  CAS  PubMed  Google Scholar 

  30. Walker EF, Sabuwalla Z, Huot R. Pubertal neuromaturation, stress sensitivity, and psychopathology. Dev Psychopathol. 2004;16:807–24.

    Article  PubMed  Google Scholar 

  31. Allsop SA, Vander Weele CM, Wichmann R, Tye KM. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci. 2014;8:241.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Greenwood BN, Strong PV, Fleshner M. Lesions of the basolateral amygdala reverse the long-lasting interference with shuttle box escape produced by uncontrollable stress. Behav Brain Res. 2010;211:71–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev. 2015;57:271–83.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song WM, Zhang B. Multiscale embedded gene co-expression network analysis. PLoS Comput Biol. 2015;11:e1004574.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala circuit substrates for stress adaptation and adversity. Biol Psychiatry. 2021;89:847–56.

    Article  PubMed  Google Scholar 

  40. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhattacherjee A, Djekidel MN, Chen R, Chen W, Tuesta LM, Zhang Y. Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nat Commun. 2019;10:4169.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  43. Team J. JASP. 0.14.1 edn: Amsterdam, The Netherlands, 2020.

  44. Badiani A, Caprioli D, De Pirro S. Opposite environmental gating of the experienced utility (‘liking’) and decision utility (‘wanting’) of heroin versus cocaine in animals and humans: implications for computational neuroscience. Psychopharmacology. 2019;236:2451–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Acuff SF, Amlung M, Dennhardt AA, MacKillop J, Murphy JG. Experimental manipulations of behavioral economic demand for addictive commodities: a meta-analysis. Addiction. 2020;115:817–31.

    Article  PubMed  Google Scholar 

  46. Ruiz CM, Torrens A, Castillo E, Perrone CR, Cevallos J, Inshishian VC, et al. Pharmacokinetic, behavioral, and brain activity effects of Delta(9)-tetrahydrocannabinol in adolescent male and female rats. Neuropsychopharmacology. 2021;46:959–69.

    Article  CAS  PubMed  Google Scholar 

  47. Turner AI, Smyth N, Hall SJ, Torres SJ, Hussein M, Jayasinghe SU, et al. Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology. 2020;114:104599.

    Article  PubMed  Google Scholar 

  48. Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharm. 2015;753:73–87.

    Article  CAS  Google Scholar 

  49. Bara A, Ferland JN, Rompala G, Szutorisz H, Hurd YL, Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci. 2021;22:423–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience. 2016;321:197–209.

    Article  CAS  PubMed  Google Scholar 

  51. Young CE, Tong Q. Corticotropin releasing hormone signaling in the bed nuclei of the Stria terminalis as a link to maladaptive behaviors. Front Neurosci. 2021;15:642379.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kofuji P, Araque A. G-Protein-Coupled receptors in astrocyte-neuron communication. Neuroscience 2020;456:71–84.

    Article  PubMed  Google Scholar 

  53. Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron. 2008;57:883–93.

    Article  CAS  PubMed  Google Scholar 

  54. Durkee CA, Araque A. Diversity and specificity of astrocyte-neuron communication. Neuroscience. 2019;396:73–8.

    Article  CAS  PubMed  Google Scholar 

  55. Murphy-Royal C, Gordon GR, Bains JS. Stress-induced structural and functional modifications of astrocytes-Further implicating glia in the central response to stress. Glia. 2019;67:1806–20.

    Article  PubMed  Google Scholar 

  56. Cordeiro JL, Neves JD, Vizuete AF, Aristimunha D, Pedroso TA, Sanches EF, et al. Arundic Acid (ONO-2506), an inhibitor of S100B protein synthesis, prevents neurological deficits and brain tissue damage following intracerebral hemorrhage in male Wistar rats. Neuroscience. 2020;440:97–112.

    Article  CAS  PubMed  Google Scholar 

  57. O’Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: a review of fine neuroanatomical evidence in humans. Glia. 2021;69:2077–99.

    Article  PubMed  Google Scholar 

  58. Chye Y, Christensen E, Yucel M. Cannabis use in adolescence: a review of neuroimaging findings. J Dual Diagn. 2020;16:83–105.

    Article  PubMed  Google Scholar 

  59. Munshi S, Rosenkranz JA, Caccamise A, Wolf ME, Corbett CM, Loweth JA. Cocaine and chronic stress exposure produce an additive increase in neuronal activity in the basolateral amygdala. Addict Biol. 2021;26:e12848.

    Article  CAS  PubMed  Google Scholar 

  60. Glass MJ, Kruzich PJ, Colago EE, Kreek MJ, Pickel VM. Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse. 2005;58:1–12.

    Article  CAS  PubMed  Google Scholar 

  61. Shiina N, Yamaguchi K, Tokunaga M. RNG105 deficiency impairs the dendritic localization of mRNAs for Na+/K+ ATPase subunit isoforms and leads to the degeneration of neuronal networks. J Neurosci. 2010;30:12816–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kusakawa Y, Mikawa S, Sato K. BMP5 expression in the adult rat brain. Neuroscience. 2015;284:972–87.

    Article  CAS  PubMed  Google Scholar 

  63. Lee SE, Lee Y, Lee GH. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res. 2019;42:1031–9.

    Article  CAS  PubMed  Google Scholar 

  64. Lv QY, Chen MM, Li Y, Yu Y, Liao H, Brain circuit dysfunction in specific symptoms of depression. Eur J Neurosci. 2021. https://doi.org/10.1111/ejn.15221. Epub ahead of print.

  65. Stevens LH, Spencer HM, Turkington D. Identifying four subgroups of trauma in psychosis: vulnerability, psychopathology, and treatment. Front Psychiatry. 2017;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Roozendaal B, McReynolds JR, McGaugh JL. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci. 2004;24:1385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharm Sci. 2013;34:637–44.

    Article  CAS  PubMed  Google Scholar 

  68. Perusini JN, Meyer EM, Long VA, Rau V, Nocera N, Avershal J, et al. Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharmacology. 2016;41:45–57.

    Article  CAS  PubMed  Google Scholar 

  69. Levesque D, Rouillard C. Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends Neurosci. 2007;30:22–30.

    Article  CAS  PubMed  Google Scholar 

  70. Quinnies KM, Doyle TJ, Kim KH, Rissman EF. Transgenerational effects of Di-(2-Ethylhexyl) Phthalate (DEHP) on stress hormones and behavior. Endocrinology. 2015;156:3077–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dieterich A, Floeder J, Stech K, Lee J, Srivastava P, Barker DJ, et al. Activation of Basolateral amygdala to nucleus accumbens projection neurons attenuates chronic corticosterone-induced behavioral deficits in male mice. Front Behav Neurosci. 2021;15:643272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pecina S, Schulkin J, Berridge KC. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol. 2006;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry. 2017;7:e1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garrido Zinn C, Clairis N, Silva Cavalcante LE, Furini CR, de Carvalho Myskiw J, Izquierdo I. Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc Natl Acad Sci USA. 2016;113:E4914–4919.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kash TL, Nobis WP, Matthews RT, Winder DG. Dopamine enhances fast excitatory synaptic transmission in the extended amygdala by a CRF-R1-dependent process. J Neurosci. 2008;28:13856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Puaud M, Higuera-Matas A, Brunault P, Everitt BJ, Belin D. The Basolateral amygdala to nucleus accumbens core circuit mediates the conditioned reinforcing effects of cocaine-paired cues on cocaine seeking. Biol Psychiatry. 2021;89:356–65.

    Article  CAS  PubMed  Google Scholar 

  77. Keistler CR, Hammarlund E, Barker JM, Bond CW, DiLeone RJ, Pittenger C, et al. Regulation of alcohol extinction and cue-induced reinstatement by specific projections among medial prefrontal cortex, nucleus accumbens, and Basolateral amygdala. J Neurosci. 2017;37:4462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jouroukhin Y, Zhu X, Shevelkin AV, Hasegawa Y, Abazyan B, Saito A, et al. Adolescent Delta(9)-tetrahydrocannabinol exposure and astrocyte-specific genetic vulnerability converge on nuclear factor-kappaB-Cyclooxygenase-2 signaling to impair memory in adulthood. Biol Psychiatry. 2019;85:891–903.

    Article  CAS  PubMed  Google Scholar 

  79. Zamberletti E, Gabaglio M, Grilli M, Prini P, Catanese A, Pittaluga A, et al. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharm Res. 2016;111:459–70.

    Article  CAS  Google Scholar 

  80. Zuchero JB, Barres BA. Glia in mammalian development and disease. Development. 2015;142:3805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sollner JF, Leparc G, Hildebrandt T, Klein H, Thomas L, Stupka E, et al. An RNA-Seq atlas of gene expression in mouse and rat normal tissues. Sci Data. 2017;4:170185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang X, Alnafisah RS, Hamoud AA, Shukla R, Wen Z, McCullumsmith RE, et al. Role of astrocytes in major neuropsychiatric disorders. Neurochem Res. 2021;46:2715–30.

    Article  CAS  PubMed  Google Scholar 

  83. Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun. 2020;11:1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Livezey GT, Miller JM, Vogel WH. Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats, and their correlations. Neurosci Lett. 1985;62:51–6.

    Article  CAS  PubMed  Google Scholar 

  85. Mathews IZ, Wilton A, Styles A, McCormick CM. Increased depressive behaviour in females and heightened corticosterone release in males to swim stress after adolescent social stress in rats. Behav Brain Res. 2008;190:33–40.

    Article  CAS  PubMed  Google Scholar 

  86. Dearing C, Morano R, Ptaskiewicz E, Mahbod P, Scheimann JR, Franco-Villanueva A, et al. Glucoregulation and coping behavior after chronic stress in rats: sex differences across the lifespan. Horm Behav. 2021;136:105060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Przybyl KJ, Jenz ST, Lim PH, Ji MT, Wert SL, Luo W, et al. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol Learn Mem. 2021;185:107523.

    Article  CAS  PubMed  Google Scholar 

  88. Schaack AK, Mocchi M, Przybyl KJ, Redei EE. Immediate stress alters social and object interaction and recognition memory in nearly isogenic rat strains with differing stress reactivity. Stress 2021:1–9.

  89. Cacioppo JT, Cacioppo S. Social relationships and health: the toxic effects of perceived social isolation. Soc Pers Psychol Compass. 2014;8:58–72.

    Article  Google Scholar 

  90. Ferland CL, Schrader LA. Cage mate separation in pair-housed male rats evokes an acute stress corticosterone response. Neurosci Lett. 2011;489:154–8.

    Article  CAS  PubMed  Google Scholar 

  91. Panksepp J. Brief social isolation, pain responsiveness, and morphine analgesia in young rats. Psychopharmacology. 1980;72:111–2.

    Article  CAS  PubMed  Google Scholar 

  92. Niesink RJ, van Ree JM. Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol Behav. 1982;29:819–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Qian Wang and Bin Zhang for their intellectual input on the MEGENA gene network analysis and Nayana Patel for assistance with the plasma corticosterone analysis.

Author information

Authors and Affiliations

Authors

Contributions

JMF and YLH designed the experiments. JMF, JAL, JEC, AL, MDF, and TOU conducted the experiments. RJE and GR provided computational genomics analyses for RNAseq data. JMF completed all behavioral and molecular analyses. JMF and YLH wrote the manuscript and all authors reviewed the manuscript and provided comments.

Corresponding author

Correspondence to Yasmin L. Hurd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferland, JM.N., Ellis, R.J., Rompala, G. et al. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 28, 2583–2593 (2023). https://doi.org/10.1038/s41380-022-01467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01467-0

This article is cited by

Search

Quick links