Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplantation of mesenchymal stem cells causes long-term alleviation of schizophrenia-like behaviour coupled with increased neurogenesis

Abstract

Schizophrenia is a neurodevelopmental disease with a mixed genetic and environmental aetiology. Impaired adult hippocampal neurogenesis was suggested both as a pathophysiological mechanism and as a target for therapy. In the present study, we utilized intracerebroventricular transplantation of bone marrow-derived mesenchymal stem cells (MSC) as a means to enhance hippocampal neurogenesis in the ketamine-induced neurodevelopmental murine model for schizophrenia. Syngeneic MSC have successfully engrafted and survived for up to 3 months following transplantation. Improvement in social novelty preference and prepulse inhibition was noted after transplantation. In parallel to behavioural improvement, increased hippocampal neurogenesis as reflected in the numbers of doublecortin expressing neurons in the dentate gyrus and gene expression was noted both 2 weeks following transplantation as well as 3 months later compared with nontreated animals. An independent aging effect was observed for both behaviour and neurogenesis, which was attenuated by MSC treatment. As opposed to MSC treatment, short-term treatment with clozapine was efficient only during treatment and diminished 3 months later. Interestingly, while shortly after transplantation (2 weeks) behavioural improvement was correlated mainly to FGF2 gene expression, 3 months later it was mainly correlated to the expression of the notch ligand DLL1. This suggests that long-term effect during ageing may depend on neural stem cell self-renewal. We conclude that a single intracerebroventricular injection of bone marrow-derived MSC can suffice for long-term reversal of changes in adult hippocampal neurogenesis and improve schizophrenia-like behavioural phenotype inflicted by developmental exposure to ketamine in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early postnatal ketamine exposure inflicts long-term changes in behaviour and gene expression that are reversed by MSC transplantation.
Fig. 2: Short- and long-term effects of MSC administration on schizophrenia-like behaviour and hippocampal neurogenesis.
Fig. 3: Short- and long-term effects of MSC administration on neurogenesis-related gene expression.
Fig. 4: Short- and long-term effects of MSC administration on hippocampal cytokine levels and cell engraftment.

Similar content being viewed by others

References

  1. van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45.

    Article  CAS  PubMed  Google Scholar 

  2. Kantrowitz JT. Managing negative symptoms of schizophrenia: how far have we come? CNS Drugs. 2017; 31:373-388.

  3. Velligan DI, Sajatovic M, Hatch A, Kramata P, Docherty JP. Why do psychiatric patients stop antipsychotic medication? A systematic review of reasons for nonadherence to medication in patients with serious mental illness. Cell Death Dis. 2004;11:449–68.

    Google Scholar 

  4. Schoenfeld TJ, Cameron HA. Adult neurogenesis and mental illness. Neuropsychopharmacology. 2015;40:113–28.

    Article  PubMed  Google Scholar 

  5. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22.

    Article  CAS  PubMed  Google Scholar 

  6. Walton NM, Zhou Y, Kogan JH, Shin R, Webster M, Gross AK, et al. Detection of an immature dentate gyrus feature in human schizophrenia/bipolar patients. Transl Psychiatry. 2012;2:e135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J, et al. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry. 2017;22:142–52.

    Article  CAS  PubMed  Google Scholar 

  8. Jun H, Mohammed Qasim Hussaini S, Rigby MJ, Jang M-H. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast. 2012;2012:854285.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–74.

    Article  CAS  PubMed  Google Scholar 

  10. Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019; 37:855–864.

  11. Maltman DJ, Hardy SA, Przyborski SA. Role of mesenchymal stem cells in neurogenesis and nervous system repair. Potential Stem Cells. 2011;59:347–56.

    CAS  Google Scholar 

  12. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA. 2005;102:18171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coquery N, Blesch A, Stroh A, Fernández-Klett F, Klein J, Winter C, et al. Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy. 2012;14:1041–53.

    Article  CAS  PubMed  Google Scholar 

  14. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry. 2010;15:1164–75.

    Article  CAS  PubMed  Google Scholar 

  15. Gobshtis N, Tfilin M, Wolfson M, Fraifeld VE, Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget. 2017;8:17443–52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Segal-Gavish H, Karvat G, Barak N, Barzilay R, Ganz J, Edry L, et al. Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice. Autism Res. 2016;9:17–32.

    Article  PubMed  Google Scholar 

  17. Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18:160–71.

    Article  CAS  PubMed  Google Scholar 

  18. van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Crusio WE, Schmitt A. Prenatal effects of parity on behavioral ontogeny in mice. Physiol Behav. 1996;59:1171–4.

    Article  CAS  PubMed  Google Scholar 

  20. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55:310–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engelmann M, Wotjak CT, Landgraf R. Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol Behav. 1995;58:315–21.

    Article  CAS  PubMed  Google Scholar 

  22. Feifel D, Mexal S, Melendez G, Liu PYT, Goldenberg JR, Shilling PD. The Brattleboro rat displays a natural deficit in social discrimination that is restored by clozapine and a neurotensin analog. Neuropsychopharmacology. 2009;34:2011–8.

    Article  CAS  PubMed  Google Scholar 

  23. Valsamis B, Schmid S. Habituation and prepulse inhibition of acoustic startle in rodents. J Vis Exp. 2011; e3446.

  24. Hagihara H, Toyama K, Yamasaki N, Miyakawa T. Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. 2009; e1543.

  25. Mueser KT, McGurk SR. Schizophrenia. Lancet. 2004;363:2063–72.

    Article  PubMed  Google Scholar 

  26. Jeevakumar V, Driskill C, Paine A, Sobhanian M, Vakil H, Morris B, et al. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res. 2015;282:165–75.

    Article  CAS  PubMed  Google Scholar 

  27. Barzilay R, Ben-Zur T, Sadan O, Bren Z, Taler M, Lev N, et al. Intracerebral adult stem cells transplantation increases brain-derived neurotrophic factor levels and protects against phencyclidine-induced social deficit in mice. Transl Psychiatry. 2011;1:e61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barzilay R, Ganz J, Sadan O, Ben-Zur T, Bren Z, Hinden N, et al. Mesenchymal stem cells protect from sub-chronic phencyclidine insult in vivo and counteract changes in astrocyte gene expression in vitro. Eur Neuropsychopharmacol. 2013;23:1115–23.

    Article  CAS  PubMed  Google Scholar 

  29. Kohman RA, Rhodes JS. The contribution of adult hippocampal neurogenesis to the progression of psychiatric disorders. Mod Trends Pharmacopsychiatry. 2017;31:124–51.

    Article  PubMed  Google Scholar 

  30. Turgeman G. The therapeutic potential of mesenchymal stem cells in Alzheimer’s disease: converging mechanisms. Neural Regen Res. 2015;10:698–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ben Abdallah NM-B, Slomianka L, Vyssotski AL, Lipp H-P. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging. 2010;31:151–61.

    Article  PubMed  Google Scholar 

  32. Van Assche L, Morrens M, Luyten P, Van de Ven L, Vandenbulcke M. The neuropsychology and neurobiology of late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: a critical review. Neurosci Biobehav Rev. 2017. https://doi.org/10.1016/j.neubiorev.2017.08.024.

  33. Shetty AK, Hattiangady B. Grafted subventricular zone neural stem cells display robust engraftment and similar differentiation properties and form new neurogenic niches in the young and aged hippocampus. Stem Cells Transl Med. 2016;5:1204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park D-H, Eve DJ, Sanberg PR, Musso J, Bachstetter AD, Wolfson A, et al. Increased neuronal proliferation in the dentate gyrus of aged rats following neural stem cell implantation. Stem Cells Dev. 2009;19:175–80.

    Article  CAS  Google Scholar 

  35. Kang W, Hébert JM. FGF signaling is necessary for neurogenesis in young mice and sufficient to reverse its decline in old mice. J Neurosci. 2015;35:10217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull. 2006;70:221–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto K, Shimizu E, Komatsu N, Nakazato M, Okamura N, Watanabe H, et al. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res. 2003;120:211–8.

    Article  CAS  PubMed  Google Scholar 

  38. Trujillo-Paredes N, Valencia C, Guerrero-Flores G, Arzate D-M, Baizabal J-M, Guerra-Crespo M, et al. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain. Biol Open. 2016;5:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwarz TJ, Ebert B, Lie DC. Stem cell maintenance in the adult mammalian hippocampus: a matter of signal integration? Dev Neurobiol. 2012;72:1006–15.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Q, Tang W, Luo Z, Li Y, Shu Y, Yue Z, et al. DISC1 regulates the proliferation and migration of mouse neural stem/progenitor cells through Pax5, Sox2, Dll1 and Neurog2. Front Cell Neurosci. 2017;11:261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dhanesh SB, Subashini C, James J. Hes1: the maestro in neurogenesis. Cell Mol Life Sci. 2016;73:4019–42.

    Article  CAS  PubMed  Google Scholar 

  42. Buga A-M, Vintilescu R, Balseanu AT, Pop OT, Streba C, Toescu E, et al. Repeated PTZ treatment at 25-day intervals leads to a highly efficient accumulation of doublecortin in the dorsal hippocampus of rats. PloS One. 2012;7:e39302–e39302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmoll H, Badan I, Grecksch G, Walker L, Kessler C, Popa-Wagner A. Kindling status in sprague-dawley rats induced by pentylenetetrazole: involvement of a critical development period. Am J Pathol. 2003;162:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmoll H, Ramboiu S, Platt D, Herndon JG, Kessler C, Popa-Wagner A. Age influences the expression of GAP-43 in the rat hippocampus following seizure. Gerontology. 2005;51:215–24.

    Article  CAS  PubMed  Google Scholar 

  45. Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A. Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology. Neural Regen Res. 2015;10:1349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Q, Xin W, He P, Turner D, Yin J, Gan Y, et al. Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep. 2014;4:7554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tfilin M, Turgeman G. Interleukine-17 administration modulates adult hippocampal neurogenesis and improves spatial learning in mice. J Mol Neurosci. 2019;69:254–63.

    Article  CAS  PubMed  Google Scholar 

  48. Chisholm SP, Cervi AL, Nagpal S, Lomax AE. Interleukin-17A increases neurite outgrowth from adult postganglionic sympathetic neurons. J Neurosci. 2012;32:1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin Y, Zhang J-C, Yao C-Y, Wu Y, Abdelgawad AF, Yao S-L, et al. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis. 2016;7:e2273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Himmerich H, Schönherr J, Fulda S, Sheldrick AJ, Bauer K, Sack U. Impact of antipsychotics on cytokine production in-vitro. J Psychiatr Res. 2011; 45:1358–65.

  51. Isakova IA, Lanclos C, Bruhn J, Kuroda MJ, Baker KC, Krishnappa V, et al. Allo-reactivity of mesenchymal stem cells in rhesus macaques is dose and haplotype dependent and limits durable cell engraftment in vivo. PLoS One. 2014;9:e87238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hoornaert CJ, Luyckx E, Reekmans K, Dhainaut M, Guglielmetti C, Le Blon D, et al. In vivo interleukin-13-primed macrophages contribute to reduced alloantigen-specific T cell activation and prolong immunological survival of allogeneic mesenchymal stem cell implants. STEM CELLS. 2016;34:1971–84.

    Article  CAS  PubMed  Google Scholar 

  53. Perets N, Segal-Gavish H, Gothelf Y, Barzilay R, Barhum Y, Abramov N, et al. Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behav Brain Res. 2017;331:254–60.

    Article  CAS  PubMed  Google Scholar 

  54. Hamisha KN, Tfilin M, Yanai J, Turgeman G. Mesenchymal stem cells can prevent alterations in behavior and neurogenesis induced by Aß25–35 administration. J Mol Neurosci. 2015;55:1006–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadi Turgeman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobshtis, N., Tfilin, M., Fraifeld, V.E. et al. Transplantation of mesenchymal stem cells causes long-term alleviation of schizophrenia-like behaviour coupled with increased neurogenesis. Mol Psychiatry 26, 4448–4463 (2021). https://doi.org/10.1038/s41380-019-0623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0623-x

This article is cited by

Search

Quick links