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Abstract
The development of mode-localized sensors based on amplitude output metrics has attracted increasing attention in
recent years due to the potential of such sensors for high sensitivity and resolution. Mode-localization phenomena
leverage the interaction between multiple coupled resonant modes to achieve enhanced performance, providing a
promising solution to overcome the limitations of traditional sensing technologies. Amplitude noise plays a key role in
determining the resolution of mode-localized sensors, as the output metric is derived from the measured AR
(amplitude ratio) within the weakly coupled resonator system. However, the amplitude noise originating from the
weakly coupled resonator’s closed-loop circuit has not yet been fully investigated. This paper presents a decouple-
decomposition (DD) noise analysis model, which is applied to achieve high resolution in a mode-localized tilt sensor
based on a weakly coupled resonator closed-loop circuit. The DD noise model separates the weakly coupled
resonators using the decoupling method considering the nonlinearity of the resonators. By integrating the decoupled
weakly coupled resonators, the model decomposes the weakly coupled resonator’s closed-loop circuit into distinct
paths for amplitude and phase noise analyses. The DD noise model reveals noise effects at various circuit nodes and
models the system noise in the closed-loop circuit of the weakly coupled resonators. MATLAB/Simulink simulations
verify the model’s accuracy when compared to theoretical analysis. At the optimal operating point, the mode-localized
tilt sensor achieves an input-referred instability of 3.91 × 10-4° and an input-referred AR of PSD of 2.01 × 10-4°⁄√Hz using
the closed-loop noise model. This model is also applicable to other varieties of mode-localized sensors.

Introduction
Micro/nanomechanical resonator sensing technology has

substantially advanced as driven by the ever-growing
comprehension and utilization of fundamental physical
phenomena. Various intrinsic physical phenomena, such as
internal resonance1–4, phase synchronization5–7, phonon-
cavity8–11, and mode localization12–14, have been developed
and employed to overcome the sensing resolution of the
resonator(s). Among these nonlinear physics explorations,
notable achievements include noise reduction and stability

enhancement, along with quality factor improvement
through internal resonance and phase synchronization1.
Moreover, sensitivity enhancement has been realized
through phonon-cavity and mode localization in both single
or coupled micro/nanomechanical resonator systems11,12.
Universally, these phenomena apply to oscillatory systems
and impact the energy dynamics within resonators, affecting
more than one resonator mode or vibrational element. The
phonon-cavity method facilitates mode coupling, which can
occur in single or coupled resonators, and it is compatible
with both strong and weak coupling between modes of
these resonators10,15. Moreover, mode localization can
enhance sensing sensitivity due to the highly localized dis-
placement realized through weak coupling phenomena.
Recently, a new generation of coupled resonator sensors,

known as mode-localized sensors, has been developed by
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leveraging the concept of mode localization12,13,16–18. These
sensors operate on the principle of mode localization, a
phenomenon wherein the energy of the weakly coupled
resonators becomes spatially confined within one of the
resonators, thereby enhancing the sensitivity of the sensors
based on the amplitude output metrics. In addition, these
sensors have shown the ability to enhance the sensitivity of
resonant sensors by two to four orders of magnitude when
compared to traditional resonant sensors14,16,19. Mode-
localized sensors also exhibit excellent common-mode
rejection of environmental temperature and pressure var-
iations due to their identical coupled resonators20. These
properties make mode-localized sensors ideal for detecting
various physical parameters, such as displacement21,
charge22,23, acceleration14,24,25, and tilt26–28.
Tilt sensors are essential in diverse application fields,

where both long-term stability and high sensitivity are
crucial performance requirements. In construction and
engineering, tilt sensors with such features ensure precise
monitoring of structural inclination, detecting even the
smallest deviations over extended periods. Automotive
and transportation applications demand tilt sensors that
combine long-term stability and high sensitivity to pro-
vide accurate levelling and suspension control for optimal
vehicle performance and safety. In aerospace and aviation,
where precise orientation is also critical, tilt sensors must
exhibit both long-term stability and high sensitivity to
enable accurate attitude determination and reliable flight
control. Similarly, in robotics, tilt sensors with excellent
long-term stability and high sensitivity contribute to
precise posture control and navigation in dynamic
environments. Across these varied fields, the aforemen-
tioned tilt sensors are required to ensure reliable and
accurate angle measurements and high-quality perfor-
mance. The application of mode localization to tilt sen-
sors is a natural extension of this prior research, as these
sensors require both high sensitivity and long-term sta-
bility to function effectively in various fields. Tilt sensors
measure the inclination angle of an object relative to the
gravitational force acting upon it, providing essential
information for numerous control systems29,30. The
inherent characteristics of mode-localized sensors, such
as their amplified response to small perturbations and
their inherent robustness against environmental tem-
perature and pressure, make them highly suitable for tilt
sensing applications20.
There has also recently been a strong emphasis on

enhancing the sensitivity of mode-localized sensors
through structure design25,31 or expanding the system’s
Degrees of Freedom (DoF)14,19, resulting in improved
signal detection and measurement capabilities. Further-
more, significant efforts have been devoted to optimizing
noise performance, including noise analysis and closed-
loop system optimization32–35, enabling mode-localized

sensors to achieve higher precision and accuracy in var-
ious sensors.
Related studies on the optimal operating points for the

different output metrics of the coupled resonators were
previously shown for the special condition of amplitude ratio
(AR) of approximately 1.23 and amplitude difference of
approximately 0.23, i.e., near the veering point26,32. Hemin
Zhang’s research suggests that the optimal operational
amplitude approaches the critical amplitude, at which the
sensor exhibits superior noise floor performance and
enhanced stability36. However, it is necessary to use the
weakly coupled resonator closed-loop circuit to track and
stabilize the frequency and amplitudes of the mode-localized
sensors. Therefore, further analysis of amplitude noise in
mode-localization sensors based on weakly coupled reso-
nator closed-loop circuits is of great significance. To address
this issue, we propose a decouple-decomposition (DD) noise
analysis model based on the weakly coupled resonator’s
closed-loop circuits and specifically designed for the analysis
and optimization of amplitude noise in mode-localized tilt
sensors. The DD noise model separates the weakly coupled
resonators using the decoupling method considering the
nonlinearity of the resonators. By integrating the decoupled
weakly coupled resonators, the model decomposes the
weakly coupled resonators closed-loop circuit into paths for
amplitude noise and phase noise analysis. This model
decomposes noise effects at various circuit nodes, thereby
analyzing the noise sources that adversely affect the overall
sensor performance. A resulting expression for system noise
in the weakly coupled resonator closed-loop circuit is
established. MATLAB/Simulink simulations verify the
model’s high accuracy compared with theoretical analysis.
At the optimal operating point, the mode-localized tilt
sensor achieves an input-referred instability of 3.91 × 10−4°
and an input-referred AR of PSD of 2:01´ 10�4�=

ffiffiffiffiffiffi
Hz

p
. This

model is also applicable to other varieties of mode-localized
sensors, enabling high-resolution tilt sensors that utilize the
mode-localization effect.

Results and discussion
Device structure and characterization
The mechanical configuration of the mode-localized tilt

sensor comprises a proof mass supported by four sus-
pensions, a pair of differential microlever force amplifiers,
two identical clamped-clamped (C–C) resonators con-
nected by a mechanical microlever coupling structure,
and a virtual electrostatic tuning structure, as shown in
Fig. 1a, b25,26. The dimensions of the mode-localized tilt
sensor are provided in Supplementary Materials Table I.
Upon the occurrence of a tilt variation, the proof mass
exerts an inertial force, which is subsequently amplified by
the microlever force amplifiers and applied to one of the
coupled resonators (resonator 1). This axial inertial force
alters the stiffness of the weakly coupled resonator system,
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resulting in the distribution of energy across the weakly
coupled resonators. Consequently, the vibrational ampli-
tudes of the two resonators significantly change, giving
rise to the mode-localization effect between the weakly
coupled resonators12,16. The mechanical microlever cou-
pling structure connects the two identical resonators,
leading to two coupled vibration modes, as shown in Fig.
1b: out-of-phase (mode 1) and in-phase (mode 2). The
resonant frequency discrepancy between the two coupled
modes is attributed to fabrication tolerance and can be
rectified by employing the tuning structure25.
Figure 1c, d show the open-loop amplitude-frequency

response curves of resonator 2 as subjected to varying tilt
angles with driving voltages set at 10mV and 18mV,
respectively. These curves show the alterations in the
vibration amplitudes of the two coupled modes in
response to different tilt angles. The frequency dis-
crepancies between mode 1 and mode 2 are approximately
18.75 Hz and 46.76 Hz when the driving voltages are set at
10mV and 18mV, respectively. Additionally, with these
driving voltages correspond to sensitivities of approxi-
mately 0.79 AR/° and 0.64 AR/° (Amplitude Ratio/°),
respectively, as shown in Fig. 2. The experimental con-
figuration is further described in Supplementary Material
Fig. S1.

Decoupling the weakly coupled resonators
Assuming that the two coupled resonators are identical

(the effective mass and stiffness are m1=m2=m and
k1 ¼ k1 ¼ k, respectively), the stiffness of the coupling
spring kc is much less than the stiffness of the resonators k
(kc≪ k). The dynamics equations of weakly coupled
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resonators can thus be given as

m1€x1 þ k1 þ kcð Þx1 � kcx2 ¼ f ðtÞ ð1aÞ

m2€x2 þ k2 þ kcð Þx2 � kcx1 ¼ 0 ð1bÞ
where f tð Þ ¼ F sin ωdt þ θð Þ is the driving force, ωd is the
drive force frequency, x1 and x2 are the displacements of
resonator 1 and resonator 2. Converting physical coordi-
nates fxg to modal coordinates fyg is achieved by

xf g ¼ s½ � yf g ð2Þ

Substituting (2) into (1) yields

s½ �T m½ � s½ � €yf g þ s½ �T k½ � s½ � yf g ¼ s½ �T FðtÞf g ð3Þ

s½ � ¼ 1ffiffi
2

p
m

1 1
1 �1

� �
is the transformation matrix. Then, (3) can

be obtained:

€y1 þ ω2
1y1 ¼ ff 1 tð Þ ð4aÞ

€y2 þ ω2
2y2 ¼ ff 2 tð Þ ð4bÞ

where ω1 and ω2 represent the frequencies of mode 1 and
mode 2, respectively. The force matrix and the

relationship between {x} and {y} is

ff 1 tð Þ
ff 2 tð Þ

� �
¼ s½ �T cos ωntð Þ

0

� �
¼ 1ffiffiffi

2
p

m

f 1 cos ωdtð Þ
f 2 cos ωdtð Þ

� �
ð5aÞ

x1
x2

� �
¼ 1ffiffiffi

2
p

m

1 1

1 �1

� �
Y 1 cos ωdtð Þ
Y 2 cos ωdtð Þ

� �
ð5bÞ

Decomposition for the weakly coupled resonators
The random fluctuations in an oscillator are referred to

as noise and can be decomposed into amplitude and
phase noise contributions. The ideal output of a weakly
coupled resonator closed-loop circuit should be a perfect
sinusoidal signal, with the phase φ being constant and the
mode frequency (ω0) and amplitude (V 0) varying as a
function of the input tilt angle (θt)

v tð Þ ¼ V 0 θtð Þ sin ω0 θtð Þt þ φ½ � ð6Þ

However, even when the input tilt angle is constant, the
output signal of the mode-localized tilt sensor closed-loop
circuit may still fluctuate in both amplitude and phase.
These fluctuations can be characterized as amplitude and
phase noise, as shown in Fig. 3a. The use of amplitude
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modulation and phase modulation also facilitates the
presentation and superposition of noise and ideal signals,
as illustrated in Fig. 3b. Figure 3b-I and b-II, respectively,
show schematic diagrams of amplitude modulation and
phase modulation in the phase domain, while Fig. 3b-III
and b-IV, respectively, show schematic diagrams of the
superposition of additive noise and multiplicative noise
with the ideal signal in the phase domain. The difference
between additive and multiplicative noises is in their
respective perturbation vector lengths concerning τ. For
additive noise, the length of the perturbation vector
remains unaffected by τ, whereas for multiplicative noise,
the length of the perturbation vector is dependent on τ.
The main noise sources in the weakly coupled resonator

closed-loop circuit are illustrated in Fig. 4a. To comprehen-
sively analyze the noise model, additive noise, multiplicative
noise, and resonator stiffness noise modulation are con-
sidered. Additive noise directly affects the phase and ampli-
tude noise, primarily originating from the mechanical
thermal noise of the resonator. Multiplicative noise arises
from the phase and amplitude noise resulting from gain
fluctuations in the amplifiers. Resonator stiffness noise
modulation results in changes in phase and amplitude noise
due to DC bias voltage fluctuations and resonator non-
linearity. Figure 4b lists the classification and sources of noise
involved in the weakly coupled resonator closed-loop circuit.
To facilitate the analysis of amplitude noise and phase

noise in weakly coupled resonator closed-loop circuits,
the weakly coupled resonator is regarded as two inde-
pendent resonators based on the transformation matrix
[s] (also referred to as modal equations). The motion

equations are as follows:

€y1 þ 2ξ1ω1 _y1 þ ω2
1y1 ¼ ff 1 tð Þ ð7aÞ

€y2 þ 2ξ2ω2 _y2 þ ω2
2y2 ¼ ff 2 tð Þ ð7bÞ

where ξ is the damping ratio. By employing these modal
equations, weakly coupled-resonator systems can be
modeled as independent single resonators.

When the driving signal is superimposed with additive
noise, the displacement response of the resonator is
depicted in Fig. 3b-III, which can be decomposed into
perturbations in both phase and amplitude. This decom-
position is represented as37

hpa τ; tð Þ ¼ hpr τ; tð Þ sin ω0τð Þ
V 0

ð8aÞ

haa τ; tð Þ ¼ har τ; tð Þ cos ω0τð Þ ð8bÞ

In the above equation, hpr τ; tð Þ and har τ; tð Þ can be
considered as the projections of hadd onto the phase and
amplitude directions of the ideal signal, as shown in Fig.
3b-III and b-IV.
The multiplicative noise can be considered to be the

product of the impulse signal and the driving signal at time
τ. Consequently, the displacement response of the resonator
caused by the multiplicative noise is the convolution of the
displacement response of the resonator due to the additive
noise and the displacement response of the resonator with
the ideal driving signal. Therefore, the phase and amplitude
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responses can be separately derived as

hpm τ; tð Þ ¼ hpr τ; tð Þ sin 2ω0τð Þ
2

ð9aÞ

ham τ; tð Þ ¼ har τ; tð ÞV 0

2
1� cos 2ω0τð Þ½ � ð9bÞ

The corresponding phase and amplitude responses
caused by additive and multiplicative noise can be
expressed in matrix form as

θ tð Þ
x tð Þ

� �
¼
Z

hpr
har

� �
MT τð Þ na τð Þ nm τð Þ½ �Tdτ

ð10Þ

where M is the decomposition modulation matrix for
additive and multiplicative noise

M τð Þ ¼
sin ω0τð Þ

γQ
keff

cos ω0τð Þ

sin 2ω0τð Þ
2

γQ
keff

2 1� cos 2ω0τð Þ½ �

2
64

3
75 ð11Þ

Figure 4c shows the modulation process of the reso-
nator for phase and amplitude responses induced by
additive and multiplicative noise through the decom-
position modulation matrix M.

Nonlinearities of the weakly coupled resonators
These aforementioned analyses are based on the linear

assumption of weakly coupled resonators. However,
nonlinearities may occur in weakly coupled resonators
and affect the performance of the mode-localized tilt
sensor. Therefore, studying the nonlinear model con-
tributes to understanding the impact of the nonlinear
effect of weakly coupled resonators on the performance of
the tilt sensor. The nonlinearity of weakly coupled reso-
nators can be categorized into electrostatic driving non-
linearity and mechanical nonlinearity, wherein
electrostatic driving nonlinearity includes capacitive cur-
rent nonlinearity and capacitive force nonlinearity, while
mechanical nonlinearity mainly is attributed to the non-
linear spring force38,39.
First, analyzing the noise resulting from the nonlinearity

of the capacitive detection current. Based on the rela-
tionship between the driving voltage and the resonator’s
displacement, the noise caused by the nonlinearity of the
capacitive detection current is as follows38:

icn ¼ 2Γ cuacun; Γ c ¼ Qω0η2

2kV 0
ð12Þ

where Γ c represents the noise conversion coefficient of
the nonlinear effects in the capacitive detection current
and η is the electromechanical transduction coefficient.
Then, for the nonlinearity of the capacitive driving

force. According to the relationship between the capaci-
tive driving force and the resonator’s displacement. The
noise caused by the nonlinearity of the capacitive driving
force can be obtained as follows:

iFn ¼ 2ΓFuacun; ΓF � Qω0η2

2kV 0
1� j2

QηV 0

kd

� �
ð13Þ

where ΓF is the noise transduction coefficient of the
nonlinear effects in capacitive driving forces.

For the mechanical nonlinearity, the driving force
caused by the voltage noise un on the resonator is given by
Fn ¼ ηun, which results in the resonator’s vibration
amplitude xn ¼ H ωð ÞFn � ηun

keff
, where H ωð Þ is the transfer

function of the resonator. The driving force caused by the
mechanical nonlinearity spring hardening effect on the
resonator is given by Fk

n ¼ 2keff k3x0xn. The current noise
generated due to the mechanical nonlinearity spring
hardening effect is as follows:

ikn ¼ 2Γkuacun; Γk ¼ j
3Qω0η4V 0

2d2k3
ð14Þ

where Γk is the noise transduction coefficient of the
mechanical nonlinearity spring hardening effect.

The DD noise analysis model based on a weakly coupled
resonators close-loop circuit
Based on the transformation matrix, the weakly coupled

resonators can be analyzed as two independent resonators
for noise decomposition, where each resonator system
contains both a phase noise channel and an amplitude
noise channel. As shown in Fig. 5, the blue part represents
the phase noise channel, while the black part represents
the amplitude noise channel. When the weakly coupled
resonators closed-loop circuit stabilizes, the vibration
displacements of resonator 1 and resonator 2 become
fixed due to the nonlinear limiting circuit and the modal
localization effect. For example, the vibration displace-
ment of resonator 2 stabilizes at x20 because of the pre-
sence of the nonlinear limiting circuit, while the vibration
displacement of resonator 1 stabilizes at x10 due to the
modal localization effect.
First, resonator 2 in the closed-loop circuit is analyzed.

There are three main noise nodes in the loop, namely A,
B, and C. The noise in each node is divided into additive
noise and multiplicative noise, which are applied to the
weakly coupled resonator closed-loop circuit through the
corresponding noise modulation matrix. Node A is the
noise source for driving the resonator, which mainly
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includes the thermal-mechanical noise of the resonator
and the DC bias voltage noise. Node B is the noise source
for detecting the resonator, which includes amplifier noise
and DC bias voltage noise. Node C is the reference noise
source of the nonlinear limiting circuit. Because the
parasitic effects of the nonlinear limiting circuit can also
be equivalent to a loop filter, the nonlinear limiting circuit
is only regarded as being sensitive to amplitude noise and
insensitive to phase noise. Therefore, the noise modula-

tion matrix of node C is defined as MC ¼ 0 1
0 A

� �
.

Figure 4a shows the phase noise channel of the weakly
coupled resonators closed-loop circuit through the
demodulated resonator 1 and resonator 2. Resonator 1 is

in the open-loop path, while resonator 2 is in the closed-
loop path. At node A, there is additive noise: resonator
mechanical thermal noise nm and multiplicative noise bias
voltage noise nb. Based on to (10), the phase noise at node
A of resonator 1 and resonator 2 can be obtained as fol-
lows:

npA ¼ nm nb½ �MA
1

0

� �
¼ γQ

keff

1
x0

cos ω0tð Þnm þ 1
2
sin 2ω0tð Þnb

ð15Þ

Based on to these node noise and combining the non-
linear effect caused noise, the amplitude noise can be
obtained as
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source of the nonlinear limiting circuit. Resonator 1 is open-loop and only includes nodes A and B. b Phase noise path in the weakly coupled
resonator closed-loop circuit. c Amplitude noise path in the weakly coupled resonator closed-loop circuit
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where Slinear;0AM1;AM2 and Slinear;1=f
2

AM1;AM2 represent the amplitude
white noise and amplitude 1=f 2 noise, respectively; fur-
ther details are provided in the Supplementary Material.
From (16), the optimal working point for the amplitude of
a weakly coupled resonator with nonlinear noise is
derived as

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

Q2ηγ

k2eff

 !2
vuut

0
B@

1
CA=

3Qη2

d2k2eff

vuuuut ð17Þ

Numerical simulation and verification of the DD noise
analysis model
To validate the aforementioned theoretical analysis, a

system model for simulating the weakly coupled resona-
tor’s closed-loop circuit is established using MATLAB/
Simulink, as shown in Supplementary Material Fig. S2.
In the simulation of both linear and nonlinear coupled

resonators, the third-order spring coefficient k2 is set to
zero and 5:05 ´ 107N=m3, respectively. Figure 6a, c
demonstrate the comparisons between the theoretical and
simulation results of the weakly coupled resonators
closed-loop circuit system noise model. Figure 6b, d show
the input-referred angular noise density, determined by
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Fig. 6 The results of the model simulation and prediction. The consistency between the system model simulation and the system decomposition
model amplitude noise prediction for linear in a and nonlinear coupled resonators in c. The input-referred angle noise density on the tilt sensor for
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calculating the AR sensitivity from the experimental
results, resulting in values of 5:64 ´ 10�5�=

ffiffiffiffiffiffi
Hz

p
and

6:93 ´ 10�5�=
ffiffiffiffiffiffi
Hz

p
, respectively. The consistency between

the system model simulation and the system decom-
position model’s amplitude noise prediction verifies the
model’s accuracy in describing both the linear and non-
linear resonator regions.
Figure 6 shows that the nonlinear effect will increase the

amplitude 1=f 2 noise due to nonlinearity. On the other
hand, based on (17), there is an optimal nonlinear work-
ing point for amplitude 1=f 2 noise. The simulation results
and theoretical model predictions are in good agreement,
and there is an optimal nonlinear working point for
amplitude 1=f 2 noise from Fig. 7. This conclusion is used
as a reference for the optimized design of low-frequency
amplitude 1=f 2 noise in the mode-localized tilt sensor.

The performance of the mode-localized tilt sensor
Utilizing the DD noise analysis model to improve the

amplitude 1=f 2 noise, the optimal operating point exhibits
better low-frequency noise performance. In our previous
work26, the optimal operating point for white noise of the
mode-localized tilt sensor is determined by the amplitude
ratio as approximately 1.22. The amplitude ratios of the
PSD and modified Allan deviation are calculated, and the
results are shown in Fig. 8a, b. The input-referred
amplitude ratio of PSD for the tilt sensor is
2:01 ´ 10�4�=

ffiffiffiffiffiffi
Hz

p
, and the modified Allan deviation is

3:91 ´ 10�4� when the drive voltage signal is 18 mV (as
determined by theoretical analysis) and the amplitude
ratio is 1.22. The noise level of the experimental result is

larger than that of the simulation result because of the
impacts from board-level circuit parasitic capacitances
and the drive signal noise. The simulation result of the
amplitude 1=f 2 noise coefficient on the tilt sensor for
nonlinearity is 0.0022, as calculated from Fig. 6d, and the
experimental result of the amplitude 1=f 2 noise coeffi-
cient is 0.0157, as calculated from Fig. 8a. The experi-
mental results are smaller than the simulation results
because the amplitude 1=f 2 noise closely approximates
white noise.
The resonance frequency and quality factor of the proof

mass are 1.8kHz and 927, respectively, which shows that
the maximum bandwidth limit on the tilt sensor is
determined by the characterization of the proof mass. The
amplitude ratios of the weakly coupled resonators are set
to 5, 12, and 17, which are used to investigate the band-
width of the tilt sensor at different amplitude ratios, as
shown in Fig. 8c. The effective bandwidths of the tilt
sensor are 20Hz, 47Hz, and 95Hz when the amplitude
ratios are 5, 12, and 17, respectively. Increasing the
amplitude ratio increases the effective bandwidth. Peaks
occur when the drive frequency of the tilt sensor is at the
mode frequency difference of the weakly coupled reso-
nators, which also affects the effective bandwidth for the
tilt sensor.

Discussion and conclusion
In this paper, a DD noise analysis model based on a

weakly coupled resonator closed-loop circuit is established
to optimize the noise performance of mode-localized tilt
sensors. The DD noise model separates weakly coupled
resonators using the decoupling method considering the
nonlinearity of these resonators. By integrating the
decoupled weakly coupled resonators, the model decom-
poses the weakly coupled resonator closed-loop circuit
into paths for amplitude noise and phase noise analysis,
realizing an expression of system noise in the weakly
coupled resonator closed-loop circuit. Simulation ver-
ification is conducted using MATLAB/Simulink and
demonstrates that the model has a high accuracy when
compared with theoretical analysis. The mode-localized
tilt sensor works at the optimal operating point, an input-
referred instability of 3:91´ 10�4�, where an input-referred
amplitude ratio of PSD of 2:01´ 10�4�=

ffiffiffiffiffiffi
Hz

p
is obtained.

In addition, an effective bandwidth of 47Hz is also mea-
sured on the mode-localized tilt sensor. The DD noise
analysis model for weakly coupled resonators demon-
strates potential in utilizing the mode-localized paradigm
for optimizing various sensors, including accelerometers,
electrometers, and mass sensors. Future work on enhan-
cing the resolution of mode-localized sensors could
involve the integration of ultralow mechanical coupling
structures, optimal operating Duffing nonlinearity, and
ultraprecise level bias voltages for different applications.
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noise and simulation results. The predictable results are calculated
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